• 제목/요약/키워드: Artificial intelligence model

검색결과 1,777건 처리시간 0.033초

구조부재 인식을 위한 인공지능 학습데이터 생성방법 연구 (A Study on Artificial Intelligence Learning Data Generation Method for Structural Member Recognition)

  • 윤정현;김시욱;김치경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.229-230
    • /
    • 2022
  • With the development of digital technology, construction companies at home and abroad are in the process of computerizing work and site information for the purpose of improving work efficiency. To this end, various technologies such as BIM, digital twin, and AI-based safety management have been developed, but the accuracy and completeness of the related technologies are insufficient to be applied to the field. In this paper, the learning data that has undergone a pre-processing process optimized for recognition of construction information based on structural members is trained on an existing artificial intelligence model to improve recognition accuracy and evaluate its effectiveness. The artificial intelligence model optimized for the structural member created through this study will be used as a base technology for the technology that needs to confirm the safety of the structure in the future.

  • PDF

실시간 데이터 예측을 위한 인공지능 분석 방법 연구 (A Study on the Analysis Method of Artificial Intelligence for Real-Time Data Prediction.)

  • 홍필두
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.547-549
    • /
    • 2021
  • 인공지능 분석에서 모델을 만들고 이를 검증하는 과정은 이미 생성된 데이터를 가지고 수행하는 Batch Processing이기에 연산 처리시간이 필요한 작업이다. 우리는 주식이나 국방 정보와 같은 실시간으로 발생하는 데이터를 바로 앞에서 발생한 데이터를 가지고 실시간으로 모델을 세우고 검증하여 예측하는 것이 필요하다. 이를 위한 해결책으로, 인공지능 모델링 작업에 필요한 데이터를 시간 처리 순으로 분할하고 데이터를 여러 프로세스에서 분산 처리하는 기법을 적용하여 해결하였다.

  • PDF

News Article Identification Methods with Fact-Checking Guideline on Artificial Intelligence & Bigdata

  • Kang, Jangmook;Lee, Sangwon
    • International Journal of Advanced Culture Technology
    • /
    • 제9권3호
    • /
    • pp.352-359
    • /
    • 2021
  • The purpose of this study is to design and build fake news discrimination systems and methods using fact-checking guidelines. In other words, the main content of this study is the system for identifying fake news using Artificial Intelligence -based Fact-checking guidelines. Specifically planned guidelines are needed to determine fake news that is prevalent these days, and the purpose of these guidelines is fact-checking. Identifying fake news immediately after seeing a huge amount of news is inefficient in handling and ineffective in handling. For this reason, we would like to design a fake news identification system using the fact-checking guidelines to create guidelines based on pattern analysis against fake news and real news data. The model will monitor the fact-checking guideline model modeled to determine the Fact-checking target within the news article and news articles shared on social networking service sites. Through this, the model is reflected in the fact-checking guideline model by analyzing news monitoring devices that select suspicious news articles based on their user responses. The core of this research model is a fake news identification device that determines the authenticity of this suspected news article. So, we propose news article identification methods with fact-checking guideline on Artificial Intelligence & Bigdata. This study will help news subscribers determine news that is unclear in its authenticity.

PathGAN: Local path planning with attentive generative adversarial networks

  • Dooseop Choi;Seung-Jun Han;Kyoung-Wook Min;Jeongdan Choi
    • ETRI Journal
    • /
    • 제44권6호
    • /
    • pp.1004-1019
    • /
    • 2022
  • For autonomous driving without high-definition maps, we present a model capable of generating multiple plausible paths from egocentric images for autonomous vehicles. Our generative model comprises two neural networks: feature extraction network (FEN) and path generation network (PGN). The FEN extracts meaningful features from an egocentric image, whereas the PGN generates multiple paths from the features, given a driving intention and speed. To ensure that the paths generated are plausible and consistent with the intention, we introduce an attentive discriminator and train it with the PGN under a generative adversarial network framework. Furthermore, we devise an interaction model between the positions in the paths and the intentions hidden in the positions and design a novel PGN architecture that reflects the interaction model for improving the accuracy and diversity of the generated paths. Finally, we introduce ETRIDriving, a dataset for autonomous driving, in which the recorded sensor data are labeled with discrete high-level driving actions, and demonstrate the state-of-the-art performance of the proposed model on ETRIDriving in terms of accuracy and diversity.

Critical Factors Affecting the Adoption of Artificial Intelligence: An Empirical Study in Vietnam

  • NGUYEN, Thanh Luan;NGUYEN, Van Phuoc;DANG, Thi Viet Duc
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권5호
    • /
    • pp.225-237
    • /
    • 2022
  • The term "artificial intelligence" is considered a component of sophisticated technological developments, and several intelligent tools have been developed to assist organizations and entrepreneurs in making business decisions. Artificial intelligence (AI) is defined as the concept of transforming inanimate objects into intelligent beings that can reason in the same way that humans do. Computer systems can imitate a variety of human intelligence activities, including learning, reasoning, problem-solving, speech recognition, and planning. This study's objective is to provide responses to the questions: Which factors should be taken into account while deciding whether or not to use AI applications? What role do these elements have in AI application adoption? However, this study proposes a framework to explore the significance and relation of success factors to AI adoption based on the technology-organization-environment model. Ten critical factors related to AI adoption are identified. The framework is empirically tested with data collected by mail surveying organizations in Vietnam. Structural Equation Modeling is applied to analyze the data. The results indicate that Technical compatibility, Relative advantage, Technical complexity, Technical capability, Managerial capability, Organizational readiness, Government involvement, Market uncertainty, and Vendor partnership are significantly related to AI applications adoption.

A Study on Artificial Intelligence Based Business Models of Media Firms

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.56-67
    • /
    • 2019
  • The aim of this study is to develop Artificial Intelligence (AI) based business models of media firms. We define AI and discuss 'AI activity model'. The practices of the efficiency model are home equipment-based personalization and media content recommendation. The practices of the expert model are media content commissioning, content rights negotiation, copyright infringement, and promotion. The practices of the effectiveness model are photo & video auto-tagging and auto subtitling & simultaneous translation. The practices of the innovation model are content script creation and metadata management. The related use cases from 2012 to 2017 are introduced along the four activity models of AI. In conclusion, we propose for media companies to fully utilize the AI for transforming from traditional to successful digital media firms.

생성형 인공지능을 활용한 사례 기반 간호 교육 프로그램 개발 (Development of a case-based nursing education program using generative artificial intelligence)

  • 안정희;박혜옥
    • 한국간호교육학회지
    • /
    • 제29권3호
    • /
    • pp.234-246
    • /
    • 2023
  • Purpose: This study aimed to develop a case-based nursing education program using generative artificial intelligence and to assess its usability and applicability in nursing curriculums. Methods: The program was developed by following the five steps of the ADDIE model: analysis, design, development, implementation, and evaluation. A panel of five nursing professors served as experts to implement and evaluate the program. Results: Utilizing ChatGPT, six program modules were designed and developed based on experiential learning theory. The experts' evaluations confirmed that the program was suitable for case-based learning, highly usable, and applicable to nursing education. Conclusion: Generative artificial intelligence was identified as a valuable tool for enhancing the effectiveness of case-based learning. This study provides insights and future directions for integrating generative artificial intelligence into nursing education. Further research should be attempted to implement and evaluate this program with nursing students.

Framework for evaluating code generation ability of large language models

  • Sangyeop Yeo;Yu-Seung Ma;Sang Cheol Kim;Hyungkook Jun;Taeho Kim
    • ETRI Journal
    • /
    • 제46권1호
    • /
    • pp.106-117
    • /
    • 2024
  • Large language models (LLMs) have revolutionized various applications in natural language processing and exhibited proficiency in generating programming code. We propose a framework for evaluating the code generation ability of LLMs and introduce a new metric, pass-ratio@n, which captures the granularity of accuracy according to the pass rate of test cases. The framework is intended to be fully automatic to handle the repetitive work involved in generating prompts, conducting inferences, and executing the generated codes. A preliminary evaluation focusing on the prompt detail, problem publication date, and difficulty level demonstrates the successful integration of our framework with the LeetCode coding platform and highlights the applicability of the pass-ratio@n metric.