• 제목/요약/키워드: Artificial intelligence model

검색결과 1,777건 처리시간 0.028초

인공지능서비스의 특성분석과 품질평가속성에 대한 연구 (A Study on Major Characteristic Analysis and Quality Evaluation Attributes of Artificial Intelligence Service)

  • 백창화;임성욱;최재호
    • 품질경영학회지
    • /
    • 제47권4호
    • /
    • pp.837-846
    • /
    • 2019
  • Purpose: The purpose of this study is to define various concepts, features, and scopes by examining various previous studies on AI services that are completely different from existing services. It also examines the limitations of existing service quality evaluation methods and studies the characteristics by combining them with various cases of new AI services. And this is to derive and propose quality evaluation attributes of AI service. Methods: The concept and characteristics of artificial intelligence were derived through research and analysis of various previous studies related to artificial intelligence. The key characteristics and quality evaluation items were derived through the KJ method and matching based on the keywords and characteristics derived from previous studies and various cases. Results: Based on the review of various previous studies on the quality of artificial intelligence services, this study presents the main characteristics and quality evaluation items of new artificial intelligence services, which are completely different from existing service quality evaluations. Conclusion: The quality measurement model of AI service is very useful when planning and developing AI-based new products or services because it can accurately evaluate the requirements of consumers using the services of the new AI era. In addition, consumers can be recommended a customized service according to the situation or taste, and can be provided with a customized service based on this.

Artificial Intelligence In The Modern Educational Space: Problems And Prospects

  • Iasechko, Svitlana;Pereiaslavska, Svitlana;Smahina, Olha;Lupei, Nitsa;Mamchur, Lyudmyla;Tkachova, Oksana
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.25-32
    • /
    • 2022
  • The hypothesis of the study of the article is that the use of elements of artificial intelligence will increase the effectiveness of the educational process of the university if: a set of pedagogical conditions for the construction and use of an expert system with elements of artificial intelligence in the educational process of the university is revealed; a model for preparing a future teacher of vocational training for the use of elements of artificial intelligence has been developed; a special course has been developed that contributes to the implementation of the professional orientation of education. In accordance with this, the following tasks were studied in the article: An analysis of scientific and methodological research in the field of the current state, prospects for the development and use of elements of artificial intelligence in the preparation of a future teacher of vocational training and to determine the dynamics of the introduction of intelligent expert systems in education; A set of pedagogical conditions for the construction and use of an expert system with elements of artificial intelligence in the educational process of a university is revealed; It is substantiated to develop a model for preparing a teacher of vocational training to use elements of artificial intelligence.

초등 인공지능 교육을 위한 설명 가능한 인공지능의 교육적 의미 연구 (A Study on the Educational Meaning of eXplainable Artificial Intelligence for Elementary Artificial Intelligence Education)

  • 박다빈;신승기
    • 정보교육학회논문지
    • /
    • 제25권5호
    • /
    • pp.803-812
    • /
    • 2021
  • 본 연구는 문헌 연구 통해 설명 가능한 인공지능의 개념과 문제해결과정을 탐구하였다. 본 연구를 통하여 설명 가능한 인공지능의 교육적 의미와 적용 방안을 제시하였다. 설명 가능한 인공지능 교육이란 인간과 관련된 인공지능 문제를 다루는 사람 중심의 인공지능 교육으로 학생들은 문제 해결 능력을 함양할 수 있다. 그리고, 알고리즘 교육을 통해 인공지능의 원리를 이해하고 실생활 문제 상황과 관련된 인공지능 모델을 설명하며 인공지능의 활용분야까지 확장할 수 있다. 이러한 설명 가능한 인공지능 교육이 초등학교에서 적용되기 위해서는 실제 삶과 관련된 예를 사용해야 하며 알고리즘 자체가 해석력을 지닌 것을 활용하는 것이 좋다. 또한, 이해가 설명으로 나아가기 위해 다양한 교수학습방법 및 도구를 활용해야 한다. 2022년 개정 교육과정에서 인공지능 도입을 앞두고 본 연구가 실제 수업을 위한 기반으로써 의미 있게 활용되기를 바란다.

TOE 프레임워크와 가치기반수용모형 기반의 인공지능 신약개발 시스템 활용의도에 관한 실증 연구 (A Study on the Intention to use the Artificial Intelligence-based Drug Discovery and Development System using TOE Framework and Value-based Adoption Model)

  • 김영대;이원석;장상현;신용태
    • 한국IT서비스학회지
    • /
    • 제20권3호
    • /
    • pp.41-56
    • /
    • 2021
  • New drug discovery and development research enable clinical treatment that saves human life and improves the quality of life, but the possibility of success with new drugs is significantly low despite a long time of 14 to 16 years and a large investment of 2 to 3 trillion won in traditional methods. As artificial intelligence is expected to radically change the new drug development paradigm, artificial intelligence new drug discovery and development projects are underway in various forms of collaboration, such as joint research between global pharmaceutical companies and IT companies, and government-private consortiums. This study uses the TOE framework and the Value-based Adoption Model, and the technical, organizational, and environmental factors that should be considered for the acceptance of AI technology at the level of the new drug research organization are the value of artificial intelligence technology. By analyzing the explanatory power of the relationship between perception and intention to use, it is intended to derive practical implications. Therefore, in this work, we present a research model in which technical, organizational, and environmental factors affecting the introduction of artificial intelligence technologies are mediated by strategic value recognition that takes into account all factors of benefit and sacrifice. Empirical analysis shows that usefulness, technicality, and innovativeness have significantly affected the perceived value of AI drug development systems, and that social influence and technology support infrastructure have significant impact on AI Drug Discovery and Development systems.

플립 러닝과 메이커 교육 기반 인공지능 융합교양교과목 설계 방향 탐색 : 학습자 요구 분석을 중심으로 (Exploring the Design of Artificial Intelligence Convergence Liberal Arts Curriculum Based on Flipped Learning and Maker Education: Focusing on Learner Needs Assessment)

  • 김성애
    • 실천공학교육논문지
    • /
    • 제13권2호
    • /
    • pp.221-232
    • /
    • 2021
  • 본 연구는 코로나 19로 인하여 발생한 비대면 수업 환경에서 학습자들의 요구 분석을 토대로 플립 러닝과 메이커 교육 기반 인공지능 융합 교양 교과목의 설계 방향을 탐색하는데 그 목적이 있다. 이를 위해 메이커 교육 기반 인공지능융합 교양 교과목을 수강한 학생들과 수강하지 않은 학생들을 대상으로 플립 러닝에 대한 학생들의 인식과 함께 학습자의 교육 요구도를 조사하였다. 이를 바탕으로 Borich 교육 요구도와 The Locus for Focus Model 모델을 활용하여 교과목 내용 요소에 대한 우선 순위를 분석함으로써 교과목 설계를 위한 기초 자료로 활용하였다. 연구 결과는 다음과 같다. 첫째, 메이커 교육 기반의 인공지능 교양 교과목 내용 요소는 총 9개 영역으로 구성되었으며 플립 러닝을 활용하는 수업으로 설계되었다. 둘째, 교육 요구가 가장 높은 영역은 '인공지능 이론', '인공지능 프로그래밍 실습', '피지컬 컴퓨팅 이론', '피지컬 컴퓨팅 실습'이, 차 순위는 '융합프로젝트', '3D 프린팅 이론', '3D 프린팅 실습'으로 결정되었다. 셋째, 플립 러닝을 활용하여 메이커 교육 기반 인공지능융합 교양 교과목을 운영하는 것은 수강 경험의 유무와 상관없이 대부분 긍정적인 응답이었으며 수강 경험이 있는 학생들의 경우에는 만족도가 매우 높았다. 이를 바탕으로 플립러닝과 메이커교육을 활용한 인공지능 기반의 융합 교양 교과목이 설계되었다. 이는 학생들의 요구를 반영하여 교양 교육에서 인공지능 융합 교육의 기초를 마련하고 대학생의 인공지능 소양 함양의 기회를 제공한다는데 의의가 있다.

Experience Way of Artificial Intelligence PLAY Educational Model for Elementary School Students

  • Lee, Kibbm;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.232-237
    • /
    • 2020
  • Given the recent pace of development and expansion of Artificial Intelligence (AI) technology, the influence and ripple effects of AI technology on the whole of our lives will be very large and spread rapidly. The National Artificial Intelligence R&D Strategy, published in 2019, emphasizes the importance of artificial intelligence education for K-12 students. It also mentions STEM education, AI convergence curriculum, and budget for supporting the development of teaching materials and tools. However, it is necessary to create a new type of curriculum at a time when artificial intelligence curriculum has never existed before. With many attempts and discussions going very fast in all countries on almost the same starting line. Also, there is no suitable professor for K-12 students, and it is difficult to make K-12 students understand the concept of AI. In particular, it is difficult to teach elementary school students through professional programming in AI education. It is also difficult to learn tools that can teach AI concepts. In this paper, we propose an educational model for elementary school students to improve their understanding of AI through play or experience. This an experiential education model that combineds exploratory learning and discovery learning using multi-intelligence and the PLAY teaching-learning model to undertand the importance of data training or data required for AI education. This educational model is designed to learn how a computer that knows only binary numbers through UA recognizes images. Through code.org, students were trained to learn AI robots and configured to understand data bias like play. In addition, by learning images directly on a computer through TeachableMachine, a tool capable of supervised learning, to understand the concept of dataset, learning process, and accuracy, and proposed the process of AI inference.

Relation Between News Topics and Variations in Pharmaceutical Indices During COVID-19 Using a Generalized Dirichlet-Multinomial Regression (g-DMR) Model

  • Kim, Jang Hyun;Park, Min Hyung;Kim, Yerin;Nan, Dongyan;Travieso, Fernando
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1630-1648
    • /
    • 2021
  • Owing to the unprecedented COVID-19 pandemic, the pharmaceutical industry has attracted considerable attention, spurred by the widespread expectation of vaccine development. In this study, we collect relevant topics from news articles related to COVID-19 and explore their links with two South Korean pharmaceutical indices, the Drug and Medicine index of the Korea Composite Stock Price Index (KOSPI) and the Korean Securities Dealers Automated Quotations (KOSDAQ) Pharmaceutical index. We use generalized Dirichlet-multinomial regression (g-DMR) to reveal the dynamic topic distributions over metadata of index values. The results of our analysis, obtained using g-DMR, reveal that a greater focus on specific news topics has a significant relationship with fluctuations in the indices. We also provide practical and theoretical implications based on this analysis.

Real-world multimodal lifelog dataset for human behavior study

  • Chung, Seungeun;Jeong, Chi Yoon;Lim, Jeong Mook;Lim, Jiyoun;Noh, Kyoung Ju;Kim, Gague;Jeong, Hyuntae
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.426-437
    • /
    • 2022
  • To understand the multilateral characteristics of human behavior and physiological markers related to physical, emotional, and environmental states, extensive lifelog data collection in a real-world environment is essential. Here, we propose a data collection method using multimodal mobile sensing and present a long-term dataset from 22 subjects and 616 days of experimental sessions. The dataset contains over 10 000 hours of data, including physiological, data such as photoplethysmography, electrodermal activity, and skin temperature in addition to the multivariate behavioral data. Furthermore, it consists of 10 372 user labels with emotional states and 590 days of sleep quality data. To demonstrate feasibility, human activity recognition was applied on the sensor data using a convolutional neural network-based deep learning model with 92.78% recognition accuracy. From the activity recognition result, we extracted the daily behavior pattern and discovered five representative models by applying spectral clustering. This demonstrates that the dataset contributed toward understanding human behavior using multimodal data accumulated throughout daily lives under natural conditions.

인공지능을 이용한 급성 뇌졸중 환자의 재원일수 예측모형 개발 (Development of Predictive Model for Length of Stay(LOS) in Acute Stroke Patients using Artificial Intelligence)

  • 최병관;함승우;김촉환;서정숙;박명화;강성홍
    • 디지털융복합연구
    • /
    • 제16권1호
    • /
    • pp.231-242
    • /
    • 2018
  • 병원 재원일수의 효율적 관리는 병원의 수익과 환자의 진료비 절감을 위해 매우 중요한 요소이다. 이러한 재원일수의 효율적 관리를 위해서는 병원들이 재원일수에 대해서 벤치마킹을 할 수 있도록 지원이 필요하고 재원일수 절감의 구체적인 방향을 제시해 줄 수 있는 재원일수 예측모형의 개발이 필요하다. 본 연구에서는 2013년과 2014년도 퇴원손상환자자료 중 급성뇌졸중 환자를 추출하여 분석용 자료를 만들고 인공지능을 이용하여 급성뇌졸중 환자의 재원일수 예측모형을 개발하였다. 분석용 자료는 훈련용 60%, 평가용 40%로 분류하였다. 모형개발은 전통적 통계기법인 다중회귀분석기법과 인공지능기법인 대화식 의사결정나무기법, 신경망 기법, 그리고 이들을 모두 통합한 앙상블기법을 이용하였다. 모형평가는 Root ASE(Absolute error) 지표를 이용하였는데, 다중회귀분석은 23.7, 대화식결정나무 23.7, 신경망 분석은 22.7, 앙상블은 22.7로 나타났고 이를 통하여 재원일수 예측모형 개발에 인공지능기법의 유용성이 입증되었다. 앞으로 재원일수 예측모형개발에 인공지능 기법을 보다 효율적으로 활용할 수 있는 방안에 대해서 계속적인 연구가 이루어 질 필요가 있다.

특허데이터 기반 한국의 인공지능 경쟁력 분석 : 특허지표 및 토픽모델링을 중심으로 (Analysis of Korea's Artificial Intelligence Competitiveness Based on Patent Data: Focusing on Patent Index and Topic Modeling)

  • 이현상;차오신;신선영;김규리;오세환
    • 정보화정책
    • /
    • 제29권4호
    • /
    • pp.43-66
    • /
    • 2022
  • 인공지능 기술의 발전과 더불어 세계 각국의 인공지능 기술 특허를 둘러싼 경쟁도 치열해지고 있다. 2000년~2021년간 미국 특허청의 인공지능 기술 특허출원은 꾸준히 증가하고 있는 가운데 2010년대 들어 보다 가파른 성장세를 기록하고 있다. 특허지표를 통해 한국의 인공지능 기술경쟁력을 분석한 결과, 청각지능, 시각지능 등의 세부 분야에서 특허활동성, 영향력, 시장성 등이 우위에 있는 것으로 평가된다. 그러나, 주요국과 비교하여 한국의 인공지능 기술 특허는 양적 활동성, 시장성 확보 측면에서는 상대적으로 우수하나 기술 파급력은 다소 열위에 있는 것으로 나타난다. 최근 인공지능 기술 토픽으로 노이즈 캔슬링, 음성인식 등은 감소한 반면 모델학습 최적화, 스마트센서, 자율주행 등이 활성화되면서 성장이 기대되고 있다. 한국의 경우 사기탐지/보안, 의료 비전러닝 등의 분야에서 특허출원 성과가 다소 부족하여 분발이 요구된다.