• 제목/요약/키워드: Artificial intelligence Semiconductor

검색결과 66건 처리시간 0.022초

가변 Threshold를 이용한 Wafer Align Mark 중점 검출 정밀도 향상 연구 (A Study on Improving the Accuracy of Wafer Align Mark Center Detection Using Variable Thresholds)

  • 김현규;이학준;박재현
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.108-112
    • /
    • 2023
  • Precision manufacturing technology is rapidly developing due to the extreme miniaturization of semiconductor processes to comply with Moore's Law. Accurate and precise alignment, which is one of the key elements of the semiconductor pre-process and post-process, is very important in the semiconductor process. The center detection of wafer align marks plays a key role in improving yield by reducing defects and research on accurate detection methods for this is necessary. Methods for accurate alignment using traditional image sensors can cause problems due to changes in image brightness and noise. To solve this problem, engineers must go directly into the line and perform maintenance work. This paper emphasizes that the development of AI technology can provide innovative solutions in the semiconductor process as high-resolution image and image processing technology also develops. This study proposes a new wafer center detection method through variable thresholding. And this study introduces a method for detecting the center that is less sensitive to the brightness of LEDs by utilizing a high-performance object detection model such as YOLOv8 without relying on existing algorithms. Through this, we aim to enable precise wafer focus detection using artificial intelligence.

  • PDF

프라이버시 보존 머신러닝의 연구 동향 (A Study on Privacy Preserving Machine Learning)

  • 한우림;이영한;전소희;조윤기;백윤흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.924-926
    • /
    • 2021
  • AI (Artificial Intelligence) is being utilized in various fields and services to give convenience to human life. Unfortunately, there are many security vulnerabilities in today's ML (Machine Learning) systems, causing various privacy concerns as some AI models need individuals' private data to train them. Such concerns lead to the interest in ML systems which can preserve the privacy of individuals' data. This paper introduces the latest research on various attacks that infringe data privacy and the corresponding defense techniques.

잔류가스 분석기(RGA)와 인공지능 모델링을 이용한 모니터링 시스템 개발 (Development of Monitoring System Using Residual Gas Analyzer (RGA) and Artificial Intelligence Modeling)

  • 이지수;김송훈;김경수;송효종;박상훈;고득훈;이봉재
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.129-134
    • /
    • 2024
  • This study aims to talk about the necessity of solving the PFC gas emission problem raised by the recent development of the semiconductor industry and the remote plasma source method monitoring system used in the semiconductor industry. The 'monitoring system' means that the researchers applied machine learning to the existing monitoring technology and modeled it. In the process of this study, Residual Gas Analyzer monitoring technology and linear regression model were used. Through this model, the researchers identified emissions of at least 12700mg CO2 to 75800mg CO2 with values ranging from ion current 0.6A to 1.7A, and expect that the 'monitoring system' will contribute to the effective calculation of greenhouse gas emissions in the semiconductor industry in the future.

  • PDF

In-situ Process Monitoring Data from 30-Paired Oxide-Nitride Dielectric Stack Deposition for 3D-NAND Memory Fabrication

  • Min Ho Kim;Hyun Ken Park;Sang Jeen Hong
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.53-58
    • /
    • 2023
  • The storage capacity of 3D-NAND flash memory has been enhanced by the multi-layer dielectrics. The deposition process has become more challenging due to the tight process margin and the demand for accurate process control. To reduce product costs and ensure successful processes, process diagnosis techniques incorporating artificial intelligence (AI) have been adopted in semiconductor manufacturing. Recently there is a growing interest in process diagnosis, and numerous studies have been conducted in this field. For higher model accuracy, various process and sensor data are required, such as optical emission spectroscopy (OES), quadrupole mass spectrometer (QMS), and equipment control state. Among them, OES is usually used for plasma diagnostic. However, OES data can be distorted by viewport contamination, leading to misunderstandings in plasma diagnosis. This issue is particularly emphasized in multi-dielectric deposition processes, such as oxide and nitride (ON) stack. Thus, it is crucial to understand the potential misunderstandings related to OES data distortion due to viewport contamination. This paper explores the potential for misunderstanding OES data due to data distortion in the ON stack process. It suggests the possibility of excessively evaluating process drift through comparisons with a QMS. This understanding can be utilized to develop diagnostic models and identify the effects of viewport contamination in ON stack processes.

  • PDF

MAGICal Synthesis: 반도체 패키지 이미지 생성을 위한 메모리 효율적 접근법 (MAGICal Synthesis: Memory-Efficient Approach for Generative Semiconductor Package Image Construction)

  • 창윤빈;최원용;한기준
    • 마이크로전자및패키징학회지
    • /
    • 제30권4호
    • /
    • pp.69-78
    • /
    • 2023
  • 산업 인공지능의 발달과 함께 반도체의 수요가 크게 증가하고 있다. 시장 수요에 대응하기 위해 패키징 공정에서 자동 결함 검출의 중요성 역시 증가하고 있다. 이에 따라, 패키지의 자동 불량 검사를 위한 딥러닝 기반의 방법론들의 연구가 활발히 이루어 지고 있다. 딥러닝 기반의 모델은 학습을 위해서 대량의 고해상도 데이터를 필요로 하나, 보안이 중요한 반도체 분야의 특성상 관련 데이터의 공유 및 레이블링이 쉽지 않아 모델의 학습이 어려운 한계를 지니고 있다. 또한 고해상도 이미지를 생성하기 위해 상당한 컴퓨팅 자원이 요구되는데, 본 연구에서는 분할정복 접근법을 통해 적은 컴퓨팅 자원으로 딥러닝 모델 학습을 위한 충분한 양의 데이터를 확보하는 방법을 소개한다. 제안된 방법은 높은 해상도의 이미지를 분할하고 각 영역에 조건 레이블을 부여한 후, 독립적인 부분 영역과 경계를 학습시켜, 경계 손실이 일관적인 이미지를 생성하도록 유도한다. 이후, 분할된 이미지를 하나로 통합하여, 최종적으로 모델이 고해상도의 이미지를 생성하도록 구성하였다. 실험 결과, 본 연구를 통해 증강된 이미지들은 높은 효율성, 일관성, 품질 및 범용성을 보였다.

CNN 기반 딥러닝을 이용한 임베디드 리눅스 양각 문자 인식 시스템 구현 (An Implementation of Embedded Linux System for Embossed Digit Recognition using CNN based Deep Learning)

  • 유연승;김정길;홍충표
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.100-104
    • /
    • 2020
  • Over the past several years, deep learning has been widely used for feature extraction in image and video for various applications such as object classification and facial recognition. This paper introduces an implantation of embedded Linux system for embossed digits recognition using CNN based deep learning methods. For this purpose, we implemented a coin recognition system based on deep learning with the Keras open source library on Raspberry PI. The performance evaluation has been made with the success rate of coin classification using the images captured with ultra-wide angle camera on Raspberry PI. The simulation result shows 98% of the success rate on average.

Deep Learning을 기반으로 한 Feature Extraction 알고리즘의 분석 (Analysis of Feature Extraction Algorithms Based on Deep Learning)

  • 김경태;이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.60-67
    • /
    • 2020
  • Recently, artificial intelligence related technologies including machine learning are being applied to various fields, and the demand is also increasing. In particular, with the development of AR, VR, and MR technologies related to image processing, the utilization of computer vision based on deep learning has increased. The algorithms for object recognition and detection based on deep learning required for image processing are diversified and advanced. Accordingly, problems that were difficult to solve with the existing methodology were solved more simply and easily by using deep learning. This paper introduces various deep learning-based object recognition and extraction algorithms used to detect and recognize various objects in an image and analyzes the technologies that attract attention.

초저전력 엣지 지능형반도체 기술 동향 (Trends in Ultra Low Power Intelligent Edge Semiconductor Technology)

  • 오광일;김성은;배영환;박성모;이재진;강성원
    • 전자통신동향분석
    • /
    • 제33권6호
    • /
    • pp.24-33
    • /
    • 2018
  • In the age of IoT, in which everything is connected to a network, there have been increases in the amount of data traffic, latency, and the risk of personal privacy breaches that conventional cloud computing technology cannot cope with. The idea of edge computing has emerged as a solution to these issues, and furthermore, the concept of ultra-low power edge intelligent semiconductors in which the IoT device itself performs intelligent decisions and processes data has been established. The key elements of this function are an intelligent semiconductor based on artificial intelligence, connectivity for the efficient connection of neurons and synapses, and a large-scale spiking neural network simulation framework for the performance prediction of a neural network. This paper covers the current trends in ultra-low power edge intelligent semiconductors including issues regarding their technology and application.

실시간 채팅 환경에서 문장 분석을 이용한 대상자 및 비속어 검출 (Target and Swear Word Detection Using Sentence Analysis in Real-Time Chatting)

  • 염충석;장준영;장유환;김현철;박희민
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.83-87
    • /
    • 2021
  • By the increase of internet usage, communicating online became an everyday thing. Thereby various people have experienced profanity by anonymous users. Nowadays lots of studies tried to solve this problem using artificial intelligence, but most of the solutions were for non-real time situations. In this paper, we propose a Telegram plugin that detects swear words using word2vec, and an algorithm to find the target of the sentence. We vectorized the input sentence to find connections with other similar words, then inputted the value to the pre-trained CNN (Convolutional Neural Network) model to detect any swears. For target recognition we proposed a sequential algorithm based on KoNLPY.

클라우드 서비스 사업자 파트너 관리 정책 수립에 관한 연구 (A Study on Establishment of Cloud Service Provider Partner Management Policy)

  • 박원주;서광규
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.115-120
    • /
    • 2021
  • In Korea, where the world's first cloud computing development law was created, cloud service technology has been developing so far, and the industries to which artificial intelligence and big data technologies can be applied based on this are increasing. It is important for domestic and overseas cloud operators to secure many partners in order to provide optimal services to users. It is also important to systematically develop the partner's technology and discover new partners. In particular, the public, medical, and financial sectors are industrial fields that are difficult for domestic as well as global cloud service providers to expand without the help of partners. This study analyzes partner policies for industries caused by domestic regulations through domestic and foreign cases, and aims to establish partner management policies optimized for the domestic environment.