• Title/Summary/Keyword: Artificial dissipation

Search Result 52, Processing Time 0.027 seconds

Judgement Criterion of Insulation Deterioration in 4.16kV and 6.6kV Motor Stator Windings (4.16kV 및 6.6kV 전동기 고정자 권선의 절연열화 판정기준)

  • Kim, Hee-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.788-794
    • /
    • 2009
  • To assess the condition of stator insulation, nondestructive tests were performed on twenty five coil groups and twenty six motors. The stator windings has nominal ratings of 6.6kV and are classified into five coil groups ;one group with healthy insulation and four groups with four different types of artificial defects. After completing nondestructive tests, the AC voltage applied to the stator windings was gradually increasing until insulation failure in order to obtain the breakdown voltage. No.1, No.2 and No.6 of 6.6kV motors failed near rated voltage of 14kV, 8.7kV and 14kV, respectively. The breakdown voltage of three motors was lower that expected for good quality coils(14.2kV) in 6.6kV motors. No.3 and No.6 of 4.16kV motors failed near rated voltage of 5.6kV and 4.2kV, respectively. Almost all of failures were located in a line-end coil at the exit from the core slot. The breakdown voltages and the types of defects showed strong relation to the stator insulation tests such as in the case of AC current, dissipation factor(tan${\delta}$) and partial discharge magnitude.

High temperature deformation behaviors of AZ31 Mg alloy by Artificial Neural Network (인공 신경망을 이용한 AZ31 Mg 합금의 고온 변형 거동연구)

  • Lee B. H.;Reddy N. S.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.231-234
    • /
    • 2005
  • The high temperature deformation behavior of AZ 31 Mg alloy was investigated by designing a back propagation neural network that uses a gradient descent-learning algorithm. A neural network modeling is an intelligent technique that can solve non-linear and complex problems by learning from the samples. Therefore, some experimental data have been firstly obtained from continuous compression tests performed on a thermo-mechanical simulator over a range of temperatures $(250-500^{\circ}C)$ with strain rates of $0.0001-100s^{-1}$ and true strains of 0.1 to 0.6. The inputs for neural network model are strain, strain rate, and temperature and the output is flow stress. It was found that the trained model could well predict the flow stress for some experimental data that have not been used in the training. Workability of a material can be evaluated by means of power dissipation map with respect to strain, strain rate and temperature. Power dissipation map was constructed using the flow stress predicted from the neural network model at finer Intervals of strain, strain rates and subsequently processing maps were developed for hot working processes for AZ 31 Mg alloy. The safe domains of hot working of AZ 31 Mg alloy were identified and validated through microstructural investigations.

  • PDF

Design of Optimal Thermal Structure for DUT Shell using Fluid Analysis (유동해석을 활용한 DUT Shell의 최적 방열구조 설계)

  • Jeong-Gu Lee;Byung-jin Jin;Yong-Hyeon Kim;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.641-648
    • /
    • 2023
  • Recently, the rapid growth of artificial intelligence among the 4th industrial revolution has progressed based on the performance improvement of semiconductor, and circuit integration. According to transistors, which help operation of internal electronic devices and equipment that have been progressed to be more complicated and miniaturized, the control of heat generation and improvement of heat dissipation efficiency have emerged as new performance indicators. The DUT(Device Under Test) Shell is equipment which detects malfunction transistor by evaluating the durability of transistor through heat dissipation in a state where the power is cut off at an arbitrary heating point applying the rating current to inspect the transistor. Since the DUT shell can test more transistor at the same time according to the heat dissipation structure inside the equipment, the heat dissipation efficiency has a direct relationship with the malfunction transistor detection efficiency. Thus, in this paper, we propose various method for PCB configuration structure to optimize heat dissipation of DUT shell and we also propose various transformation and thermal analysis of optimal DUT shell using computational fluid dynamics.

Restoration Method of Small Stream using Artificial Step-pool Sequences (계단상 하상구조를 이용한 계류복원 방안)

  • Kim, Suk-Woo;Chun, Kun-Woo;Kim, Kyoung-Nam;Park, Chong-Min;Marutani, Tomomi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.11-23
    • /
    • 2011
  • Mountain streams, which are major components of an entire river network, play an important role as the source of water, sediment, coarse and fine organic matter, and nutrients for lowland rivers. Therefore, dynamics and downstream linkages of each compartment of the mountain stream can be essential for watershed management in catchment scale. The dynamics and downstream linkages are understood as a development of step-pool sequences along a river course. Recently, stream restoration after flooding event often employ the development of step-pool sequences in the world. In this paper, we 1) examined the geomorphic characteristics and the role of step-pool sequences in steep mountain streams by reviewing the results of past studies, and 2) introduced the case studies of stream restoration using step-pool sequences, and finally 3) addressed design methods considering geometry and stability of artificial step-pool sequences for stream restoration. Step-pool sequences play an important role not only as roughness with energy dissipation but also as heterogeneity of stream feature for aquatic habitat. Step-pool sequences, even if they are constructed artificially along a stream, may be effective for small stream restoration considering eco-friendly torrent controls. So far the artificial step-pool sequences were employed for mountainous streams, but those would be applied to urban stream.

An Experimental Study of Surface Materials for Planting of Building Surface by the Radiant Heat Balance Analysis in the Summer (하절기 실험을 통한 건물녹화용 피복재료의 복사수지 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.71-80
    • /
    • 2010
  • This study carried out to understand the thermal characteristics of various surface material which compose the city through the observation in the summer. To examine passive cooling effect of planting of building, it is arranged four different materials that is natural grass, grass block, concrete slab and artificial grass. The results of this study are as follows; (1) Natural grass and grass block show the lower surface temperature because of the structures of leaf can do more thermal dissipation effectively. (2) There is little surface temperature between artificial grass and concrete. But there is little high surface temperature difference between natural grass and concrete because of latent heat effect. (3) The concrete can play a role of the tropical nights phenomenon as high heat capacity of concrete compare with other materials. (4) It is nearly same color in artificial grass and natural grass but there is large difference between natural grass and artificial grass at albedo. There is different albedo in near infrared ray range. (5) A short wave radiation gives more effect at the globe temperature than long wave radiation. (6) The artificial turf protected the slab surface temperature increase in spite of thin and low albedo materials.

Vibration Control Performance Evaluation of Semi-active Outrigger Damper System (준능동 아웃리거 댐퍼시스템의 진동제어 성능평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.81-89
    • /
    • 2015
  • Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.

Ranking Artificial Bee Colony for Design of Wireless Sensor Network (랭킹인공벌군집을 적용한 무선센서네트워크 설계)

  • Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.87-94
    • /
    • 2019
  • A wireless sensor network is emerging technology and intelligent wireless communication paradigm that is dynamically aware of its surrounding environment. It is also able to respond to it in order to achieve reliable and efficient communication. The dynamical cognition capability and environmental adaptability rely on organizing dynamical networks effectively. However, optimally clustering the cognitive wireless sensor networks is an NP-complete problem. The objective of this paper is to develop an optimal sensor network design for maximizing the performance. This proposed Ranking Artificial Bee Colony (RABC) is developed based on Artificial Bee Colony (ABC) with ranking strategy. The ranking strategy can make the much better solutions by combining the best solutions so far and add these solutions in the solution population when applying ABC. RABC is designed to adapt to topological changes to any network graph in a time. We can minimize the total energy dissipation of sensors to prolong the lifetime of a network to balance the energy consumption of all nodes with robust optimal solution. Simulation results show that the performance of our proposed RABC is better than those of previous methods (LEACH, LEACH-C, and etc.) in wireless sensor networks. Our proposed method is the best for the 100 node-network example when the Sink node is centrally located.

Construction of an Efficient and Robust Implicit Operator for the LU-SGS Method on Unstructured Meshes (비정렬 격자계에서 LU-SGS 기법에 대한 강건하고 효율적인 내재적 연산자 구성)

  • Kim J.S.;Kwon O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.73-77
    • /
    • 2004
  • In the present study, an efficient and robust implicit operator for the LU-SGS method is proposed. Numerical experiments for supersonic flow are performed to demonstrate the performance of the proposed method.

  • PDF

Numerical Study of Sound Radiation from curved intake (굴곡형 흡입관에서의 소음 방사 해석)

  • Shim I. B.;Lee D. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.88-94
    • /
    • 2002
  • Curved intakes are commonly used from commercial aircraft to military missile. Sound radiation from the intake of air vehicle affects cabin noise, community noise and military detection. In this paper, Sound radiation from curved intake is computed using the high order, high resolution scheme. The generalized characteristic boundary conditions, adaptive nonlinear artificial dissipation model and conformal mapping for high order, high resolution scheme are used. The geometric change of curved intake and the frequency of acoustic source are considered. Two dimensional Euler equations are solved for theses analyses.

  • PDF

An Experimental Study on the Beack Nourishment Method of Beach (인공양빈공법에 관한 실험적 연구)

  • 민병형;옥치율;김가현;최도식
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.163-169
    • /
    • 1988
  • A beach nourishment method can be used as one of the beach. The beach nourishment is affected br a natural condition and an artificial condition; a natural condtion include conditions of bottom slope, diameter of bottom materials and wave, and an artificial condition include deposit position, method, diameter and quantity of the nourishing sand. To obtain and the best diameter of the nourishing sand a two-dimensional hydraulic model test, which simulates the erosional beach, has been accmplished. In this study the protection of the beach erosion can be maximized when the nourishing sand of 0.84mm in diameter, which is about 2.5-3.5 times of the natural bottom materials in diameter.

  • PDF