• Title/Summary/Keyword: Artificial control

Search Result 2,512, Processing Time 0.04 seconds

L-SYSTEM IN CELLUSAT AUTOMATA DESIGN OF ARTIFICIAL NEURAL DECISION SYSTEMS

  • Sugisaka, Masanori;Sato, Mayumi;Zhang, Yong-guang;Casti, John
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.69-70
    • /
    • 1995
  • This paper considers the applications of cellular automata in order to design self-organizing artificial neural decision systems such as self-organizing neurocomputer circuit, machines, and artifical life VLSI circuits for controlling mechanical systems. We consider the L-system and show the results of growth of plants in artificial life.

  • PDF

Adaptive control based on nonlinear dynamical system

  • Sugisaka, Masanori;Eguchi, Katsumasa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.401-405
    • /
    • 1993
  • This paper presents a neuro adaptive control method for nonlinear dynamical systems based on artificial neural network systems. The proposed neuro adaptive controller consists of 3 layers artificial neural network system and parallel PD controller. At the early stage in learning or identification process of the system characteristics the PD controller works mainly in order to compensate for the inadequacy of the learning process and then gradually the neuro contrller begins to work instead of the PD controller after the learning process has proceeded. From the simulation studies the neuro adaptive controller is seen to be robust and works effectively for nonlinear dynamical systems from a practical applicational points of view.

  • PDF

The Parameter Compensation Technique of Induction Motor by Neural Network (신경회로망을 이용한 유도전동기의 파라미터 보상)

  • Kim Jong-Su;Oh Sae-Gin;Kim Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.169-175
    • /
    • 2006
  • This paper describes how an Artificial Neural Network(ANN) can be employed to improve a speed estimation in a vector controlled induction motor drive. The system uses the ANN to estimate changes in the motor resistance, which enable the sensorless speed control method to work more accurately. Flux Observer is used for speed estimation in this system. Obviously the accuracy of the speed control of motor is dependent upon how well the parameters of the induction machine are known. These parameters vary with the operating conditions of the motor; both stator resistance(Rs) and rotor resistance(Rr) change with temperature, while the stator leakage inductance varies with load. This paper proposes a parameter compensation technique using artificial neural network for accurate speed estimation of induction motor and simulation results confirm the validity of the proposed scheme.

Modeling of Superficial Pain using ANNs

  • Matsunaga, Nobutomo;Kuroki, Asayo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1293-1298
    • /
    • 2005
  • In the environment where human coexists with robot, the problem of safety is very important. But it is difficult to separate the robot from the human in time-domain or space-domain unlike the case of factory automation, so a new concept is needed. One approach is to notice sensory and emotional feeling of human, and in this study "pain" is focused, which is a typical unpleasant feeling when the robot contacts us. In this paper, to design the controller based on the pain, an artificial superficial pain model caused by impact is proposed. This ASPM model consists of mechanical pain model, skin model and gate control by artificial neural networks (ANNs). The proposed ASPM is evaluated by experiments.

  • PDF

Formation Control for Swarm Robots Using Artificial Potential Field (인공 포텐셜 장을 이용한 군집 로봇의 대형 제어)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.476-480
    • /
    • 2012
  • In this paper, artificial potential field(APF) is applied to formation control for the leader-following swarm robot. Furthermore, APF is constructed by applying the electrical field model. Moreover, to model the obstacle effectively, each obstacle has different form due to the electrical field equation. The proposed method is formed as two sub-objective: path planning for the leader-robot and following-robots following the leader-robot. Finally, simulation example is given to prove the validity of proposed method.

A Study on the New Parameter Estimation of Induction Motor (새로운 유도전동기의 파라미터 추정에 관한 연구)

  • Lee, D.G.;Oh, S.G.;Kim, J.S.;Kim, G.H.;Kim, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.47-48
    • /
    • 2005
  • This paper describes how an Artificial Neural Network(ANN) can be employed to improve a speed estimation in a vector controlled induction motor drive. The system uses the ANN to estimate changes in the motor resistance, which enable the sensorless speed control method to work more accurately. Flux Observer is used for speed estimation in this system. Obviously the accuracy of the speed control of motor is dependent upon how well the parameters of the induction machine are known. These parameters vary with the operating conditions of the motor; both stator resistance(Rs) and rotor resistance(Rr) change with temperature, while the stator leakage inductance varies with load. This paper proposes a parameter compensation technique using artificial neural network for accurate speed estimation of induction motor and simulation results confirm the validity of the proposed scheme.

  • PDF

Action Selections for an Autonomous Mobile Robot by Artificial Immune Network (인공면역망에 의한 자율이동로봇의 행동 선택)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.532-532
    • /
    • 2000
  • Conventional artificial intelligence systems are not properly responding under dynamically changing environments. To overcome this problem, reactive planning systems implementing new Al principles, called behavior-based Al or emergent computation, have been proposed and confirmed their usefulness. As another alternative, biological information processing systems may provide many feasible ideas to these problems. Immune system, among these systems, plays important roles to maintain its own system against dynamically changing environments. Therefore, immune system would provide a new paradigm suitable for dynamic problem dealing with unknown environments. In this paper, a new approach to behavior-based Al by paying attention to biological immune system is investigated. The feasibility of this method is confirmed by applying to behavior control of an autonomous mobile robot in cluttered environment.

  • PDF

Precise Control Law Design of Robot Finger Embedding Distributed Actuation Mechanism (분산 구동 메커니즘을 내장한 로봇 핑거의 정밀 자세 제어기 설계)

  • Shin, Young-June;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.846-851
    • /
    • 2010
  • In this paper, we newly propose a novel control strategy of a three joints-robot finger for the purpose of artificial hands. The robot finger is specifically modeled by using a 3D CAD program (CATIA), considering human fingers, and then the proposed control method is verified through the dynamic simulation tool (Simulink and Recurdyn R2). Each slider is individually controlled to be located at the optimal positions where the maximal joint torque can be generated. To prove the effectiveness of the proposed control method, we devise two cases for the reference position of sliders. By comparing the control performance of two cases, the validity of the proposed control method will be verified.

다중센서를 이용한 로봇 손의 파지 제어

  • 이양희;서동수;박민용;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.694-697
    • /
    • 1996
  • The aim of this work for 5 years from 1994 is to develop a multi-fingered robot hand and its control system for grasp and manipulation of objects dexterously. Since the robot hand is still being developed, a commercialized robot hand from Barrett Company is utilized to implement a hand controller and control algorithm. For this, VME based motion control and interface boards are developed and multi-sensors such as encoder, force/torque sensor, dynamic sensor and artificial skin sensor are partly developed and employed for the grasping control algorithm. In oder to handle uncertainties such as mechanical idleness and backlash, a fuzzy rule based grasping algorithm is also considered and tested with the developed control system.

  • PDF