• Title/Summary/Keyword: Artificial Roughness

Search Result 112, Processing Time 0.018 seconds

A Study on the Enhanced Heat Transfer and Fluid Flow Induced by Square-Ribbed Surface Roughness (4각 리브로된 표면조도에 의한 유체유동 및 열전달 증진에 관한 연구)

  • Lee, C.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.155-162
    • /
    • 1992
  • Theoritical Study is performed on heat transfer and fluid flow induced by square-ribbed roughness elements in a concentric annulus. The fluid properties were assumed to be constant, and the radius($r_m$) of the maximum speed point was found by using the principle of equation of Leung and Labib. The Nusselt number and friction factor as a function of the Reynolds number($R_e=10^4$, $5{\times}10^4$, $7{\times}10^4$, $10^5$) in artifical roughness $S/{\epsilon}=5,10,20,30$, $P/{\epsilon}=2,5,8$ and prandtl number = 0.72 have been discussed. In this study, it has been found that the Nusselt number and friction factor of rough wall are larger than those of smooth ones.

  • PDF

A Study on the Application of ANN for Surface Roughness Prediction in Side Milling AL6061-T4 by Endmill (AL6061-T4의 측면 엔드밀 가공에서 표면거칠기 예측을 위한 인공신경망 적용에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.55-60
    • /
    • 2021
  • We applied an artificial neural network (ANN) and evaluated surface roughness prediction in lateral milling using an endmill. The selected workpiece was AL6061-T4 to obtain data of surface roughness measurement based on the spindle speed, feed, and depth of cut. The Bayesian optimization algorithm was applied to the number of nodes and the learning rate of each hidden layer to optimize the neural network. Experimental results show that the neural network applied to optimize using the Expected Improvement(EI) algorithm showed the best performance. Additionally, the predicted values do not exactly match during the neural network evaluation; however, the predicted tendency does march. Moreover, it is found that the neural network can be used to predict the surface roughness in the milling of aluminum alloy.

Real-Time Prediction for Product Surface Roughness by Support Vector Regression (서포트벡터 회귀를 이용한 실시간 제품표면거칠기 예측)

  • Choi, Sujin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.117-124
    • /
    • 2021
  • The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.

Turbulent Heat Transfer in Rough Concentric Annuli With Heating Condition of Constant Wal Heat Flux (일정벽면열유속의 가열조건의 갖는 거친 동심환형관내의 난류열전달)

  • 손유식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • The fully developed turbulent momentum and heat transfer induced by the roughness elements on the outer wall surfaces in concentric annuli are analytically studied on the basis of a modified turbu-lence model. The resulting momentum and heat transfer are discussed in terms of various parame-ters such as the radius ratio the roughness density Reynolds number and Prandtl number accord-ing to the heating condition. The study shows that certain artificial roughness elements may be used to enhance heat transfer rates with advantage from the overall efficiency point of view.

  • PDF

Turbulent Fluid Flow and Heat Transfer in Concentric Annuli with Square-Ribbed Surface Roughness (사각돌출형 표면거칠기가 있는 이중동심원관 내의 난류유동과 열전달)

  • 안수환;이윤표;김경천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1294-1303
    • /
    • 1993
  • The fully developed turbulent momentum and heat transfer induced by the square-ribed roughness elements on the inner wall surface in concentric annuli is studied analytically based on a modified turbulence model. The analytical results of the fluid flow is verified by experiment. The resulting momentum and heat transfer are discussed in terms of various parameters, such as the radius ratio, the relative roughness, the roughness density, fluid Reynolds number and for heat transfer, fluid Prandtl number. The study demonstrates that certain artificial roughness elements may be used to enhance heat transfer rates with advantages from the overall efficiency point of view.

Characterization of Fracture Roughness in Coarse.medium.fine Grained Granite (암반 불연속면의 거칠기 특성 - 조.중.세립질 화강암을 중심으로 -)

  • 김종태;정교철;김만일;송재용;박창근
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.147-168
    • /
    • 2004
  • Purpose of this study is to quantitatively characterize the fracture roughness which was measured with a confocal laser scanning microscope. The roughness discrete data measured by confocal laser microscope were analyzed by spectral analysis and fast Fourier transform (FFT).The roughness data by used noise reduction filter were applied for fractal analysis to describe roughness features quantitatively. Artificial fractures created by Brazilian test on granites were used to measure fracture roughness under the confocal laser scanning microscope. Measurements were performed along three scan lines on each fracture surface. 36 scan lines were determined on 12 specimens in total. Features of roughness showed that coarse and medium grained granites tend to more rough features than those of fine grained granites. Continuous analog data of roughness is possible to described as discrete data of measure roughness with a fixed interval under the confocal laser microscope. Results of FFT with the measured data showed the highest values on the second harmonics. Distribution of average amplitude of second harmonics was observed 0.9853 in coarse grained granite, 1.0792 in medium grained granite and 0.6794 in fine grained granite. This indicates that the larger roughness has the higher energy of harmonics as the result of fractal analysis in low frequency zone.

A Study on Artificial Wheel Load Generation Method Using PSD Analysis (PSD 함수를 이용한 인공윤하중의 생성기법에 대한 연구)

  • Cho, Kwang-Il;Choi, Moon-Seock;Lim, Ji-Young;Kim, Sang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.184-189
    • /
    • 2008
  • In this study, an artificial wheel load generation method is proposed to assist practical engineers performing dynamic analysis with simple procedure. To generate an artificial wheel loads from running vehicle, PSD(Power Spectrum Density) profiles of actual wheel load were sampled in terms of various road roughnesses. A detailed truck and bridge models were used for sampling actual wheel load to represent the real motion of moving vehicle. These wheel load profiles were simplified for the artificial wheel load. The simplification of actual wheel load profiles was performed by regression analysis. The result showed that the artificial wheel load well represents the real profiles of wheel load.

  • PDF

Effects of Grinding and Masking Conditions on the Potentiodynamic Polarization Curves of Additively Manufactured Ti-6Al-4V Alloy in Artificial Saliva Solution with or Without Fluoride Ions (불소 첨가/미첨가 인공타액 용액에서 연마 및 마스킹 조건이 적층제조 Ti-6Al-4V 합금의 동전위분극시험 결과에 미치는 영향)

  • Ahn, KyungBin;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.475-483
    • /
    • 2021
  • Additively manufactured titanium alloy is one of the promising materials in advanced medical industries. However, these additively manufactured alloys show corrosion properties different from those of conventional materials due to their unique microstructure. In this study, the effect of surface roughness and masking conditions on the results of the potentiodynamic polarization tests on additively manufactured or conventional Ti-6Al-4V alloys in artificial saliva solution with or without fluoride was investigated. The results showed that the corrosion potential was slightly lower with a flat cell with an O-ring than with masking tape. The corrosion rate was decreased with decreases in the surface roughness. Localized corrosion involving delamination of the surface layer occurred at 7 ~ 9 V (SSC) on the additively manufactured alloy in solution with or without fluoride when the samples were finished with 1000-grit SiC paper, whereas localized corrosion was not observed in the specimens finished with 1-㎛ alumina paste.

Generation of a 3D Artificial Joint Surface and Characterization of Its Roughness (삼차원 인공 절리면의 생성과 이에 대한 거칠기 특성 평가)

  • Choi, Seung-Beum;Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.516-523
    • /
    • 2016
  • Roughness of a joint surface is one of the most important parameters that affects the mechanical and hydraulic behavior of rock mass. Therefore, various studies on making constitutive model and/or roughness quantification have been conducted in experimental and empirical manners. Advances in recent 3D printing technology can be utilized to generate a joint surface with a specific roughness. In this study, a reliable technique to generate a rough joint surface was introduced and its quantitative assessment was made. Random midpoint displacement method was applied to generate a joint surface and the distribution of $Z_2$ was investigated to assess its roughness. As a result, a certain roughness can be embodied by controlling input parameters and furthermore it was able to generate a joint surface with specific roughness anisotropy.

Deformation Behaviors and Acoustic Emissions of Rock Joints in Direct Shear (직접전단시험을 통한 암석 절리의 변형거동 및 미소파괴음 발생에 관한 연구)

  • 김태혁;이상돈;이정인
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.274-286
    • /
    • 1994
  • Direct shear tests were on ducted in a laboratory setting in order to investigate the shear strength and deformation behavior of rock joints. Also, the characteristics of acoustic emissions (AE) during shearing of rock joints were studied. The artificial rock joints were created by splitting the intact blocks of Hwangdeung granites and Iksan marbles. Joint roughness profiles were measured by a profile gage and then digitized by Image analyzer. Roughness profile indices(Rp) of the joints were calculated with these digitized data. Peak shear strength, residual shear strength, shear stiffness and maximum acoustic emission(AE) rate were investigated with joint roughness. The peak shear strenght, the residual shear strength and the shear stiffness were increased as roughness popfile index or normal stress increased in the shear tests of granites. In the tests of marble samples, the shear deformation characteristics were not directly affected by joint roughness. As the result of two directional shear tests, the shear characteristics were varied with shear direction. AE count rates were measured during the shear deformation and the AE signals in several stages of the deformation were analyzed in a frequency domain. The AE rate peaks coincided with the stress drops during the shear deformation of joint. The dominant frequencies of the AE signals were in the vicinity of 100 kHz fo rgranite sample and 900 kHz for marble samples. The distribution of amplitude was dispersed with increasing normal stress.

  • PDF