• Title/Summary/Keyword: Artificial Organs

Search Result 85, Processing Time 0.022 seconds

Fabrication of Multi-layered Macroscopic Hydrogel Scaffold Composed of Multiple Components by Precise Control of UV Energy

  • Roh, Donghyeon;Choi, Woongsun;Kim, Junbeom;Yu, Hyun-Yong;Choi, Nakwon;Cho, Il-Joo
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • Hydrogel scaffolds composed of multiple components are promising platform in tissue engineering as a transplantation materials or artificial organs. Here, we present a new fabrication method for implementing multi-layered macroscopic hydrogel scaffold composed of multiple components by controlling height of hydrogel layer through precise control of ultraviolet (UV) energy density. Through the repetition of the photolithography process with energy control, we can form several layers of hydrogel with different height. We characterized UV energy-dependent profiles with single-layered PEGDA posts photocrosslinked by the modular methodology and examined the optical effect on the fabrication of multi-layered, macroscopic hydrogel structure. Finally, we successfully demonstrated the potential applicability of our approach by fabricating various macroscopic hydrogel constructs composed of multiple hydrogel layers.

Artificial muscles: Non-Stoichiometry Nature, Sensing and Actuating Properties and Tactile Sensibility

  • Otero T.F.;Lopez-Cascales J.J.;Vazquez-Arenas G.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.118-122
    • /
    • 2005
  • Electro-chemo-mechanical devices or artificial muscles based on conducting polymers (CP) are presented as bilayers, CP/adhesive polymer, or as triple layers, CP/adhesive polymer/CP. Those soft and wet materials, working in aqueous solutions of a salt, mimic the composition of most organs from animals. Under electrochemical control, so working as new electrical machines, they produce continuous, reverse and elegant bending movements, mimicking those produce by animal muscles. By means of the current a perfect controls of the movement rate is attained giving soft and continuous movements. Muscles able to sense the chemical and mechanical conditions of work or muscle having tactile sense, as will be presented here, are being developed. All of them are founded on the non-stoichiometric nature of the soft and wet materials.

Design and Analysis of Motor-Driven Artificial Heart( I );Disign (모터 구동형 인공심장의 설계 및 해석(I) 설계)

  • 천길정;한동철;민병구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.843-854
    • /
    • 1991
  • 본 연구에서는 제반 설계이론과 방법론을 적용하여 기존의 모델들이 가지고 있는 결점을 극복할 수 있는 독창적인 인공심장을 설계하고, 그 결과 시스템 설계에 있어서의 체계적인 설계방법론 적용의 타당성과 효율성을 입증하고자 한다. 또한 그 과정에서 인공장기 설계시에 만족시켜야 할 원칙을 제시하고, 그러한 원칙을 효과 적으로 만족시킬수 있는 새로운 설계원리를 탐구하고자 한다.

Augmented Reality to Localize Individual Organ in Surgical Procedure

  • Lee, Dongheon;Yi, Jin Wook;Hong, Jeeyoung;Chai, Young Jun;Kim, Hee Chan;Kong, Hyoun-Joong
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.394-401
    • /
    • 2018
  • Objectives: Augmented reality (AR) technology has become rapidly available and is suitable for various medical applications since it can provide effective visualization of intricate anatomical structures inside the human body. This paper describes the procedure to develop an AR app with Unity3D and Vuforia software development kit and publish it to a smartphone for the localization of critical tissues or organs that cannot be seen easily by the naked eye during surgery. Methods: In this study, Vuforia version 6.5 integrated with the Unity Editor was installed on a desktop computer and configured to develop the Android AR app for the visualization of internal organs. Three-dimensional segmented human organs were extracted from a computerized tomography file using Seg3D software, and overlaid on a target body surface through the developed app with an artificial marker. Results: To aid beginners in using the AR technology for medical applications, a 3D model of the thyroid and surrounding structures was created from a thyroid cancer patient's DICOM file, and was visualized on the neck of a medical training mannequin through the developed AR app. The individual organs, including the thyroid, trachea, carotid artery, jugular vein, and esophagus were localized by the surgeon's Android smartphone. Conclusions: Vuforia software can help even researchers, students, or surgeons who do not possess computer vision expertise to easily develop an AR app in a user-friendly manner and use it to visualize and localize critical internal organs without incision. It could allow AR technology to be extensively utilized for various medical applications.

A finite element analysis of a new design of a biomimetic shape memory alloy artificial muscle

  • Jaber, Moez Ben;Trojette, Mohamed A.;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.479-496
    • /
    • 2015
  • In this work, a novel artificial circular muscle based on shape memory alloy (S.M.A.) is proposed. The design is inspired from the natural circular muscles found in certain organs of the human body such as the small intestine. The heating of the prestrained SMA artificial muscle will induce its contraction. In order to measure the mechanical work provided in this case, the muscle will be mounted on a silicone rubber cylindrical tube prior to heating. After cooling, the reaction of the rubber tube will involve the return of the muscle to its prestrained state. A finite element model of the new SMA artificial muscle was built using the software "ABAQUS". The SMA thermomechanical behavior law was implemented using the user subroutine "UMAT". The numerical results of the finite element analysis of the SMA muscle are presented to shown that the proposed design is able to mimic the behavior of a natural circular muscle.

Development of a Cardiovascular Simulator with Cardiovascular Characteristics (혈관계의 특성이 반영된 심혈관계 시뮬레이터의 개발)

  • Lee, Ju-Yeon;Shin, Sang-Hoon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.3
    • /
    • pp.33-40
    • /
    • 2012
  • Objectives: Existing cardiovascular simulators are used to evaluate artificial organs such as artificial hearts, prosthetic valves, and artificial blood vessels, and pulses are typically triggered using artificial hearts. However, the forms of pulse waves vary according to the location of arteries, and for precise assessment of artificial blood vessels, the development of simulators that generate diverse pressure pulse waves is necessary. This study developed a novel cardiovascular simulator that generates different forms of pulse waves. Methods: This simulator consists of a stepping motor, a slider-crank mechanism that transforms the rotation movement of a motor into the straight-line motion of a piston, a piston that generates pulsatile flows, a water tank that supplies fluids, an elastic tube made of silicon, and a device that adjusts the terminal resistance of fluids. Results & Conclusion: This study examined motor rotation and its operation under conditions similar to the physiological conditions of the heart. The simulator developed in this study produced diverse forms of waves, and the generated pressure waves well satisfied physiological conditions.

An Evolutionary Model for Automatically Generating Artificial Creatures of Various Shapes and Colors

  • Lee, Peisuei;Masayuki-Nakajima
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.119-124
    • /
    • 1999
  • This paper proposes an evolutionary model for automatically generating artificial creatures of various shapes and colors according to insect ecology. This model offers a novel way to naturally evolve the shapes and colors of artificial creatures. The evolutionary model used in our research is based on Genetic Algorithms (GA). In this paper, artificial Computer Graphics(CG) creatures develop into various shapes and colors according to the evolutionary model. Later, they can be used as CG animated characters. This model also solves the problem of reducing the time and labor cost for mass production of various characters. It could be used in such areas as the cavalry battle scene in Disney's animation, “Mulan”. Our approach has two steps. At first, artificial creatures move according to information gathered form the five senses. This information is also used for generating the shapes of the five sense organs[1]. Then, based on the GA, evolutionary mode[2], we prepare prototype creatures, which evolve into various shapes and different colors in alternating generations. Finally, our evolutionary model successfully generates various character shapes and colors automatically.

Polymer Nanofibers for Biomedical Engineering

  • Shin, Min-Kyoon;Kim, Seon-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Recent advancements in the electrospinning method enable the production of ultrafine solid and continuous fibers with diameters ranging from a few nanometers to a few hundred nanometers with controlled surface and morphological features. A wide range of biopolymers can be electrospun into mats with a specific fiber arrangement and structural integrity. These features of nanofiber mats are morphologically similar to the extracellular matrix of natural tissues, which are characterized by a wide pore diameter distribution, a high porosity, effective mechanical properties, and specific biochemical properties. This has resulted in various kinds of applications for polymer nanofibers in the field of biomedicine and biotechnology. The current emphasis of research is on exploiting these properties and focusing on determining the appropriate conditions for electrospinning various biopolymers for biomedical applications, including scaffolds used in tissue engineering, wound dressing, drug delivery, artificial organs, and vascular grafts, and for protective shields in specialty fabrics. This paper reviews the research on biomedical applications of electrospun nanofibers.

Accumulation of Heavy Metals in the Antarctic Clam Laternula elliptica

  • Lee, Yong-Seok;Jeong, Kye-Heon
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.87-91
    • /
    • 2004
  • Immunohistochemical and ultrastructural experiments were conducted to find out heavy metal accumulation in some selected organs such as the kidney, the hepatopancreas, and the gills of the Antarctic Clam Laternula elliptica According to the immunohistochemical study the subject organs of the clam showed reactions indicating the presence of MT(metallothionein), a metal-binding protein involved in metal detoxifying process. Examination under the transmission electron microscope also revealed that other ligands(e.g. metal-rich granules in the kidney) may play a role in metal accumulating and detoxifying process in L. elliptica. In the artificial exposure of the clam to Cd, it showed immediate subcellular responses, suggesting that this species can be used as rapid and efficient bioindicators for Cd exposure in natural environment.

  • PDF

Artifical Neural Network for In-Vitro Thrombosis Detection of Mechanical Valve

  • Lee, Hyuk-Soo;Lee, Sang-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.762-766
    • /
    • 1998
  • Mechanical valve is one of the most widely used implantable artificial organs, Since its failure (mechanical failures and thrombosis to name two representative example) means the death of patient, its reliability is very important and early noninvasive detection is essential requirement . This paper will explain the method to detect the thrombosis formation by spectral analysis and neural network. In order quantitatively to distinguish peak of a normal valve from that of a thrombotic valve, a 3 layer backpropagation neural network, which contains 7,000 input nodes, 20 hidden layer and 1output , was employed. The trained neural network can distinguish normal and thrombotic valve with a probability that is higher than 90% . In conclusion, the acoustical spectrum analysis coupled with a neural network algorithm lent itself to the noninvasive monitoring of implanted mechanical valves. This method will be applied to be applied to the performance evaluation of other implantable rtificial organs.

  • PDF