• 제목/요약/키워드: Artificial Neural network

검색결과 3,137건 처리시간 0.033초

Static Switch Controller Based on Artificial Neural Network in Micro-Grid Systems

  • Saeedimoghadam, Mojtaba;Moazzami, Majid;Nabavi, Seyed. M.H.;Dehghani, Majid
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1822-1831
    • /
    • 2014
  • Micro-grid is connected to the main power grid through a static switch. One of the critical issues in micro-grids is protection which must disconnect the micro-grid from the network in short-circuit contingencies. Protective methods of micro-grid mainly follow the model of distribution system protection. This protection scheme suffers from improper operation due to the presence of single-phase loads, imbalance of three-phase loads and occurrence of power swings in micro-grid. In this paper, a new method which prevents from improper performance of static micro-grid protection is proposed. This method works based on artificial neural network (ANN) and able to differentiate short circuit from power swings by measuring impedance and the rate of impedance variations in PCC bus. This new technique provides a protective system with higher reliability.

Artificial neural network application to solute transport through unsaturated zone

  • Yoon, Hee-Sung;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.307-311
    • /
    • 2004
  • The unsaturated zone is a significant pathway of the surface contaminant movement and is a highly heterogeneous medium. Therefore, there are limitations in applying conventional convection-dispersion equation(CDE). Artificial neural network(ANN) is considered to be a versatile tool for approximating complex functions. For evaluating the applicability of ANN, numerical tests using ANN were conducted with training set generated by HYDRUS-2D which is based on CDE. The results represent that ANN can estimate the solute transport and the choice of network parameters and generation of training set patterns are important for efficient estimation.

  • PDF

인공신경망을 이용한 한국 종합주가지수의 방향성 예측 (Predicting Korea Composite Stock Price Index Movement Using Artificial Neural Network)

  • 박종엽;한인구
    • 지능정보연구
    • /
    • 제1권2호
    • /
    • pp.103-121
    • /
    • 1995
  • This study proposes a artificial neural network method to predict the time to buy and sell the stocks listed on the Korea Composite Stock Price Index(KOSPI). Four types (NN1, NN2, NN3, NN4) of independent networks were developed to predict KOSPIs up/down direction after four weeks. These networks have a difference only in the length of learning period. NN5 - arithmetic average of four networks outputs - shows an higher accuracy than other network types and Multiple Linear Regression (MLR), and buying and selling simulation using systems outputs produces higher reture than buy-and-hold strategy.

  • PDF

Predicting the Saudi Student Perception of Benefits of Online Classes during the Covid-19 Pandemic using Artificial Neural Network Modelling

  • Beyari, Hasan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.145-152
    • /
    • 2022
  • One of the impacts of Covid-19 on education systems has been the shift to online education. This shift has changed the way education is consumed and perceived by students. However, the exact nature of student perception about online education is not known. The aim of this study was to understand the perceptions of Saudi higher education students (e.g., post-school students) about online education during the Covid-19 pandemic. Various aspects of online education including benefits, features and cybersecurity were explored. The data collected were analysed using statistical techniques, especially artificial neural networks, to address the research aims. The key findings were that benefits of online education was perceived by students with positive experience or when ensured of safe use of online platforms without the fear cyber security breaches for which recruitment of a cyber security officer was an important predictor. The issue of whether perception of online education as a necessity only for Covid situation or a lasting option beyond the pandemic is a topic for future research.

순환신경망 기초 실습 사례 개발 (Development of Basic Practice Cases for Recurrent Neural Networks)

  • 허경
    • 실천공학교육논문지
    • /
    • 제14권3호
    • /
    • pp.491-498
    • /
    • 2022
  • 본 논문에서는 비전공자들을 위한 교양과정으로, 기초 순환신경망 과목 커리큘럼을 설계하는데 필수적으로 요구되는 순환신경망 SW 실습 사례를 개발하였다. 개발된 SW 실습 사례는 순환신경망의 동작원리를 이해시키는 데 초점을 두고, 시각화된 전체 동작 과정을 확인할 수 있도록 스프레드시트를 사용하였다. 개발된 순환신경망 실습 사례는 지도학습 방식의 텍스트완성 훈련데이터 생성, 입력층, 은닉층, 상태층(컨텍스트 노드) 그리고 출력층을 차례대로 구현하고, 텍스트 데이터에 대해 순환신경망의 성능을 테스트하는 것으로 구성되었다. 본 논문에서 개발한 순환신경망 실습사례는 다양한 문자 수를 갖는 단어를 자동 완성한다. 제안한 순환신경망 실습사례를 활용하여, 한글 또는 영어 단어를 구성하는 최대 문자 수를 다양하게 확장하여 자동 완성하는 인공지능 SW 실습 사례를 만들 수 있다. 따라서, 본 순환신경망 기초 실습 사례의 활용도가 높다고 할 수 있다.

인공신경망 기반 호텔 부도예측모형 개발 (A Development of Hotel Bankruptcy Prediction Model on Artificial Neural Network)

  • 최성주;이상원
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권10호
    • /
    • pp.125-133
    • /
    • 2014
  • 본 논문에서는 호텔경영을 위한 인공신경망 기반의 부도예측 모형을 개발한다. 부도예측 모형은 호텔에서 관리하는 사업장의 사업성과 이터를 바탕으로 부도 가능성을 평가하여 호텔 전체사업의 부도를 예측하는 특징을 가진다. 부도예측을 위한 전통적인 통계기법은 다변량 판별분석이나 로짓분석 등이 있는데, 본연구는 이들보다 우수한 예측정확성을 갖는 인공신경망 기법을 이용해서 연구를 진행하였다. 이를 위해 우선 우수기업 100개와 도산기업 100개를 선정하여 전체 실험데이터를 구성하고, 뉴로쉘이라는 인공신경망 도구를 이용하여 부도예측모형을 구성하였다. 본 모형 설계와 실험은 서비스드 레지던스 호텔에서 관리하는 각 브랜치의 부도예측과 재무건전성을 판단하기에 효율성이 높아 호텔 경영의 의사결정에 많은 도움이 될 것이다.

인공신경망을 이용한 굴착단계별 흙막이벽체의 최대변위 예측시스템 개발 (Development of a System Predicting Maximum Displacements of Earth Retaining Walls at Various Excavation Stages Using Artificial Neural Network)

  • 김홍택;박성원;권영호;김진홍
    • 한국지반공학회논문집
    • /
    • 제16권1호
    • /
    • pp.83-97
    • /
    • 2000
  • 본 연구에서는, 흙막이 벽체의 변위 예측시스템 개발을 위하여 다층퍼셉트론을 이용해 임의의 인공신경망 모델을 구축하고 그 성능을 평가하여 최적의 모델을 선정하였다. 인공신경망모델의 학습과 검증을 위해 국내 도심지에 실제 시공이 완료된 다양한 현장의 계측자료를 수집하였고, 수집된 계측자료의 분석을 통해 흙막이벽체의 거동에 영향을 미치는 인자를 조사하였다. 아울러 실행비를 기준으로 선별한 신뢰성 있는 계측자료를 조사된 영향인자를 토대로 데이터 베이스화하여 인공신경망 모델의 학습과 검증에 사용하였으며, 학습은 최급강하법을 기초로 하는 역전파 알고리즘을 이용하여 수행하였다. 학습에 포함되지 않은 현장들에 대하여 흙막이벽체의 최대수평변위와 그 발생위치를 예측하고 이를 계측치와 비교하여, 제시한 변위 예측시스템의 적용성을 부분적으로 확인하였다.

  • PDF

노이즈가 완화된 거품 효과를 표현하기 위한 인공신경망 기반의 투영맵 정제 (Refinement of Projection Map Based on Artificial Neural Networks to Represent Noise-Reduced Foam Effects)

  • 김종현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권4호
    • /
    • pp.11-24
    • /
    • 2021
  • 본 논문에서는 액체 시뮬레이션에서 표현되는 거품 효과(Foam effects)를 노이즈 없이 디테일하게 표현할 수 있는 인공신경망 프레임워크를 제안한다. 거품 입자의 생성 위치와 이류는 기존의 스크린 투영법을 활용하여 계산되며, 이 과정에서 나타나는 노이즈 문제를 인공신경망을 통해 풀어낸다. 스크린 투영 접근법에서 중요한 것은 투영맵이지만 이산화된 스크린 공간에 운동량을 투영하는 과정에서 투영맵에 노이즈가 발생하며, 우리는 인공신경망 기반의 디노이징(Denoising) 네트워크를 활용하여 이 문제를 효율적으로 풀어낸다. 투영맵을 통해 거품 생성 영역이 선별되면 2D를 3D 공간으로 역변환하여 거품 입자를 생성한다. 우리는 작은 크기의 거품들이 소실되는 기존의 디노이징 네트워크 문제를 해결하였다. 뿐만 아니라, 제안하는 알고리즘을 스크린 공간 투영 프레임워크와 통합함으로써 이 접근법이 갖는 모든 장점을 그대로 수용할 수 있다. 결과적으로 깔끔한 거품 효과 뿐만 아니라, 디노이징 과정으로 인해 소실된 거품을 안정적으로 표현할 수 있는지 다양한 실험을 통해 보여준다.

미시추 구간의 지반 층상정보 예측을 위한 정규 크리깅 및 인공신경망 기법의 비교 (Comparison of Ordinary Kriging and Artificial Neural Network for Estimation of Ground Profile Information in Unboring Region)

  • 전찬준;최창호;조진우
    • 한국지반환경공학회 논문집
    • /
    • 제20권3호
    • /
    • pp.15-20
    • /
    • 2019
  • 확한 토공량 설계를 위해서는 충분한 량의 지반조사 자료가 필요하나 비용적인 문제로 인하여 제한적인 지반조사가 수행되고 있다. 정확한 토공량 예측을 위해서 지반의 층상정보를 추정하는 것은 중요한 사항이며, 이러한 제한적인 지반조사 데이터로부터 정확한 토공량 예측을 위해서는 지구통계학적(geo-statistical) 분석방법으로 지반 층상정보를 예측할 수 있다. 또한, 기시추된 지반 층상정보를 활용하여 기계학습을 통하여 모델을 학습하여 미시추된 지반 층상정보를 예측할 수도 있는데, 본 논문에서는 인공신경망을 통하여 미시추된 지반 층상정보를 예측하고 기존의 정규 크리깅 기법과 성능을 비교한다. 이를 위하여, 84공의 지반 층상정보를 활용한다. 84공의 지반 층상정보의 데이터셋 중에서 75공을 학습 데이터셋으로 활용하였고, 나머지 9공을 검증 데이터셋으로 활용하였다. 검증 데이터셋의 실측된 지반 층상정보와 정규 크리깅 기법과 인공신경망으로 예측된 지반 층상정보를 비교 분석한다.

인공신경망 알고리즘을 활용한 가뭄 취약지역 분석 (Analysis of Drought Vulnerable Areas using Neural-Network Algorithm)

  • 신정훈;김준경;염민교;김진평
    • 한국재난정보학회 논문집
    • /
    • 제17권2호
    • /
    • pp.329-340
    • /
    • 2021
  • 연구목적: 본 연구는 인공신경망 라이브러리 기술을 이용하여, 기상 데이터 변화 예측을 통한 한반도 가뭄 취약지역 분석을 목적으로 하였다. 연구방법: 연구지역 중 북한 지역의 다양한 기상데이터의 확보가 힘든 특수성을 고려하여 연구지역의 월별 누적강수량 데이터를 활용하였으며, 통계프로그램 R을 이용하여 인공신경망 알고리즘을 통한 기상데이터 추정을 수행하였다. 연구결과: 본 논문에서 진행한 연구 결과, 실제 데이터와 예측 데이터 간의 상관계수 값은 인공신경망 알고리즘을 활용한 결과가 회귀분석 결과보다 평균 0.043879 더 높은 것으로 확인되었다. 결론: 연구의 결과는 가뭄 대응을 위한 재난대응 기초 연구 자료로 활용 가능할 것으로 기대한다.