• 제목/요약/키워드: Artificial Neural network

검색결과 3,137건 처리시간 0.031초

사출성형공정에서 다수 품질 예측에 적용가능한 다중 작업 학습 구조 인공신경망의 정확성에 대한 연구 (A study on the accuracy of multi-task learning structure artificial neural network applicable to multi-quality prediction in injection molding process)

  • 이준한;김종선
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, an artificial neural network(ANN) was constructed to establish the relationship between process condition prameters and the qualities of the injection-molded product in the injection molding process. Six process parmeters were set as input parameter for ANN: melt temperature, mold temperature, injection speed, packing pressure, packing time, and cooling time. As output parameters, the mass, nominal diameter, and height of the injection-molded product were set. Two learning structures were applied to the ANN. The single-task learning, in which all output parameters are learned in correlation with each other, and the multi-task learning structure in which each output parameters is individually learned according to the characteristics, were constructed. As a result of constructing an artificial neural network with two learning structures and evaluating the prediction performance, it was confirmed that the predicted value of the ANN to which the multi-task learning structure was applied had a low RMSE compared with the single-task learning structure. In addition, when comparing the quality specifications of injection molded products with the prediction values of the ANN, it was confirmed that the ANN of the multi-task learning structure satisfies the quality specifications for all of the mass, diameter, and height.

인공신경회로망에 의한 유도전동기의 회전자 저항 추정 (Rotor Resistance Estimation of Induction Motor by Artificial Neural-Network)

  • 김길봉;최정식;고재섭;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.50-52
    • /
    • 2006
  • This paper Proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

  • PDF

인공신경망 이론을 이용한 위성영상의 카테고리분류 (Multi-temporal Remote-Sensing Imag e ClassificationUsing Artificial Neural Networks)

  • 강문성;박승우;임재천
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.59-64
    • /
    • 2001
  • The objectives of the thesis are to propose a pattern classification method for remote sensing data using artificial neural network. First, we apply the error back propagation algorithm to classify the remote sensing data. In this case, the classification performance depends on a training data set. Using the training data set and the error back propagation algorithm, a layered neural network is trained such that the training pattern are classified with a specified accuracy. After training the neural network, some pixels are deleted from the original training data set if they are incorrectly classified and a new training data set is built up. Once training is complete, a testing data set is classified by using the trained neural network. The classification results of Landsat TM data show that this approach produces excellent results which are more realistic and noiseless compared with a conventional Bayesian method.

  • PDF

신경망을 이용한 코히런트발전기의 선정 (Identification of coherent generators for dynamic equivalents using artificial neural network)

  • 임성정;한성호;윤용한;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.3-5
    • /
    • 1993
  • This paper presents a identification techniques of coherent generators for dynamic equivalents using artificial neural networks. In the developed neural network, inputs are the power system parameters which have a property of coherency. Outputs of the neural network are coherency and error indices which are derived from density measure concept. The learning of developed neural network is carried out by means of error back-propagation algorithm. Identification of coherent generators are implemented by proposed grouping algorithm using coherency and error indices. The proposed method is confirmed by simulations for 39-bus New England system.

  • PDF

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

Application of artificial neural network to differential diagnosis of lung lesion: Preliminary results

  • Lee, Hae-Jun;Lee, Yu-Kyung;Hwang, Kyung-Hoon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1614-1615
    • /
    • 2011
  • It is difficult to differentially diagnose between lung cancer and benign inflammatory lung lesion due to high false positive rate on F-18 FDG-PET. We investigated whether application of artificial neural network to this diagnosis may be helpful. We reviewed the medical records and F-18 FDG PET images of 12 patients, selecting clinical and PET variables such as SUV. For selected variables and confirm, multilayer neural perceptron was applied in crossvalidation method and compared to visual interpretation. Neural network correctly classified the lung lesions in 83%, and reduced greately the false positive rate. However, false negative rate was not influenced. Application of neural network to the differential diagnosis between lung cancer and benigh inflammatory lesion may be helpful. Further studies with more patients are warranted.

신경회로망을 이용한 유출수문곡선 모의에 관한 연구 (A Study on the Simulation of Runoff Hydograph by Using Artificial Neural Network)

  • 안경수;김주환
    • 한국수자원학회논문집
    • /
    • 제31권1호
    • /
    • pp.13-25
    • /
    • 1998
  • 신경회로망은 어떤 사상에 대한 인과관계를 연상기억능력을 통하여 인식할 수 있는 기능을 가지고 있을 뿐 아니라 비선형현상에 대한 적응능력이 뛰어나 수문계의 강우-유출 현상에 대한 적용가능성은 많으나 이를 수문학적으로 검증하는데는 아직 검토단계라 할 수 있으며 적용에 따른 방법론에 대한 연구가 필요하다 할 수있다. 본 연구에서는 하천유역에서 호우의 발생에 따른 하천의 홍수유출수문곡선을 모의하기 위한 블랙박스모형으로서 신경회로망이론의 적용에 따른 문제를 수문학적으로 규명하고자 하였다. 이를 위한 방법으로서 홍수발생의 직접적인 원인인 강우패턴을 신경회로망의 입력패턴으로하고 이에 따른 출력패턴을 유출수문곡선이라는 가정하에 신경회로망모형을 구성하고 평창강유역에서 발생된 과거 홍수기록자료를 이용하여 그 결과를 제시하였다. 본 연구결과에 의하면 신경회로망의 학습이 수행되는 동안 어떠한 형태로든 수문학적 개념을 토대로 구성된 모형의 구조에 잘 적응되고 있음을 알수 있었다. 이 결과를 토대로 지금까지 복잡한 과정을 거쳐야하는 강우-유출 모형화 과정에서 발생되는 문제점들을 효율적으로 해결할 수 있는 접근방법으로서 활용될수 있을 것으로 기대된다.

  • PDF

태양광 시스템의 인공신경망 기반 I-V 특성 모델링 향상 (Improved Modeling of I-V Characteristic Based on Artificial Neural Network in Photovoltaic Systems)

  • 박지원;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.135-139
    • /
    • 2022
  • The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

Explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping

  • Yu Wang;Qingxu Yao;Quanhu Zhang;He Zhang;Yunfeng Lu;Qimeng Fan;Nan Jiang;Wangtao Yu
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4684-4692
    • /
    • 2022
  • Radionuclide identification is an important part of the nuclear material identification system. The development of artificial intelligence and machine learning has made nuclide identification rapid and automatic. However, many methods directly use existing deep learning models to analyze the gamma-ray spectrum, which lacks interpretability for researchers. This study proposes an explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping. This method shows the area of interest of the neural network on the gamma-ray spectrum by generating a class activation map. We analyzed the class activation map of the gamma-ray spectrum of different types, different gross counts, and different signal-to-noise ratios. The results show that the convolutional neural network attempted to learn the relationship between the input gamma-ray spectrum and the nuclide type, and could identify the nuclide based on the photoelectric peak and Compton edge. Furthermore, the results explain why the neural network could identify gamma-ray spectra with low counts and low signal-to-noise ratios. Thus, the findings improve researchers' confidence in the ability of neural networks to identify nuclides and promote the application of artificial intelligence methods in the field of nuclide identification.