• 제목/요약/키워드: Artificial Neural network

검색결과 3,137건 처리시간 0.033초

Comparison of EKF and UKF on Training the Artificial Neural Network

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.499-506
    • /
    • 2004
  • The Unscented Kalman Filter is known to outperform the Extended Kalman Filter for the nonlinear state estimation with a significance advantage that it does not require the computation of Jacobian but EKF has a competitive advantage to the UKF on the performance time. We compare both algorithms on training the artificial neural network. The validation data set is used to estimate parameters which are supposed to result in better fitting for the test data set. Experimental results are presented which indicate the performance of both algorithms.

  • PDF

CUDA를 이용한 Convolutional Neural Network의 구현 및 속도 비교 (Development and Speed Comparison of Convolutional Neural Network Using CUDA)

  • 기철민;조태훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.335-338
    • /
    • 2017
  • 현재 인공지능과 딥 러닝이 사회적인 이슈로 떠오르고 있는 추세이며, 다양한 분야에 이 기술들을 응용하고 있다. 인공지능 분야의 여러 알고리즘들 중에서 각광받는 방법 중 하나는 Convolutional Neural Network이다. Convolutional Neural Network는 일반적인 Neural Network 방법에 Convolution 연산을 하여 Feature를 추출하는 Convolution Layer를 추가한 형태이다. Convolutional Neural Network를 적은 양의 데이터에서 이용하거나, Layer의 구조가 복잡하지 않은 경우에는 학습시간이 길지 않아 속도에 크게 신경 쓰지 않아도 되지만, 학습 데이터의 크기가 크고, Layer의 구조가 복잡할수록 학습 시간이 상당히 오래 걸린다. 이로 인해 GPU를 이용하여 병렬처리를 하는 방법을 많이 사용하는데, 본 논문에서는 CUDA를 이용한 Convolutional Neural Network를 구현하였으며, CPU를 이용한 방법보다 학습 속도가 빨라지고 큰 데이터를 학습 시키는데 더욱 효율적으로 진행하도록 한다.

  • PDF

인공신경망을 기반으로 한 C.G.S 공법의 개량효과 예측시스템 개발 (Development of Improvement Effect Prediction System of C.G.S Method based on Artificial Neural Network)

  • 김정훈;홍종욱;변요셉;정의엽;서석현;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제14권9호
    • /
    • pp.31-37
    • /
    • 2013
  • 본 연구는 C.G.S공법 적용 지반을 설치 직경, 설치 간격, 면적 치환율, 지반강성에 따른 모델링을 실시함으로써 주변 지반의 거동을 파악하고자 하였고, 인공신경망의 매개변수 연구를 통해 본 연구에 가장 적합한 인공신경망 모델을 선정하여 수치해석과 인공신경망 연계를 통한 인공신경망 예측 모델을 개발하였다. 그 결과, C.G.S 말뚝 침하량 및 지반 침하량은 직경, 설치 간격, 면적 치환율, 지반강성 별로 일치하여 하나의 곡선으로 나타났으며, 이는 C.G.S 공법 적용 지반의 거동양상이 일정한 형태로 나타남을 의미하는 것으로, 이러한 결과를 바탕으로 3차원 거동에 대한 인공신경망 학습이 가능한 것으로 파악되었다. 인공신경망의 내적인자 연구 결과, 은닉층 뉴런수 10개, 모멘텀 상수 0.2, 학습률의 경우 0.2를 사용할 경우 입력과 출력간의 관계가 적절히 표현되는 것으로 나타났다. 이러한 인공신경망 모델의 최적구조를 이용하여 C.G.S 공법의 지반 거동을 평가한 결과는 결정계수 값이 C.G.S 말뚝 침하의 경우는 0.8737, 지반 침하의 경우는 0.7339, 지반 융기의 경우는 0.7212로 나타나 충분한 신뢰도를 보이고 있음을 알수 있었다.

Spiking Neural Networks(SNN) 구조에서 뉴런의 개수와 학습량에 따른 학습 성능 변화 분석 (An analysis of learning performance changes in spiking neural networks(SNN))

  • 김용주;김태호
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.463-468
    • /
    • 2020
  • 인공지능 연구는 다양한 분야에 적용되며 발전하고 있다. 본 논문에서는 차세대 인공지능 연구 분야인 SNN(Spiking Neural Networks) 형태의 인공지능 구현 방식을 사용하여 신경망을 구축하고, 그 신경망에서 뉴런의 개수가 신경망의 성능에 어떠한 영향을 미치는지를 분석한다. 또한 신경망 학습량을 증가시키면서 신경망의 성능이 어떻게 바뀌는지를 분석한다. 해당 연구 결과를 통해 각 분야에서 사용되는 SNN 기반의 신경망을 최적화 할 수 있을 것이다.

계층적 인공신경망을 이용한 구성을 갖춘 곡의 자동생성 (Automatic Generation of a Configured Song with Hierarchical Artificial Neural Networks)

  • 김경환;정성훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권4호
    • /
    • pp.641-647
    • /
    • 2017
  • 본 논문에서는 자동작곡에서 계층적 인공신경망을 이용하여 전/중/후 별로 곡의 멜로디가 전개되는 구성을 갖춘 곡을 자동으로 생성하는 방법을 제안한다. 첫 번째 계층에서는 하나의 인공신경망을 사용하여 기존의 곡을 학습시키거나 혹은 무작위 멜로디를 학습시키고 박자후처리를 하여 곡을 출력한다. 두 번째 계층에서는 첫 번째 인공신경망이 만든 멜로디를 전/중/후별로 세 개의 인공신경망에 학습한 후 곡을 출력한다. 두 번째 계층의 세 개의 인공신경망에서는 반복을 만들기 위하여 전/중/후 별로 마디구분을 이용한 반복을 적용하며 이후 박자/화성/조성후처리를 수행하여 곡을 완성한다. 실험결과 구성을 갖춘 곡이 생성됨을 확인하였다.

인공신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류 (Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Artificial Neural Network)

  • 이용석;박숭환;정형섭;백원경
    • 대한원격탐사학회지
    • /
    • 제34권6_3호
    • /
    • pp.1399-1414
    • /
    • 2018
  • 자연림은 산림의 조성 과 보육 등에 인공적인 사람의 힘이 가해지지 않은 자연 상태의 산림이다. 반면 인공림은 사람이 조성 및 보육관리 하는 숲으로 목재생산, 자연재해 예방, 방풍 등의 목적을 가지는 산림이다. 인공림은 목재생산 등 인간이 목적을 가지고 관리하여 단위 면적당 더 많은 목재를 생산할 수 있는 경제적 장점도 가지고 있다. 자연림과 인공림의 구분은 산림 형태의 관리 방법과 목정이 상이하여 산림조사에서 기본적으로 조사하는 요소이며, 자연림과 인공림의 구분은 항공사진 판독과 현지조사 등의 절차를 통해 이루어진다. 본 연구에서는 자연림과 인공림의 분류에 KOMPSAT-3, 3A, 5 위성 영상데이터에 인공신경망(Artificial Neural Network: ANN)을 적용하여 자연림과 인공림의 분류도를 만들고, 산림청의 1/5,000임상도의 자연림과 인공림 분류도와 비교하여 평가하였다. 인공신경망을 이용한 산림의 자연림과 인공림 구분의 연구를 진행한 결과, 1/5,000 임상도와 비교했을 때, 학습결과 분류 전체 정확도는 77.03%이다. 영상의 획득 시기와 산림의 침엽수와 활엽수 등 기타요인이 인공신경망을 이용한 산림의 인공림과 자연림의 구분에 많은 영향을 미치는 것을 확인하였다.

A study on the computer aided testing and adjustment system utilizing artificial neural network

  • Koo, Young-Mo;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.65-69
    • /
    • 1992
  • In this paper, an implementation of neuro-controller with an application of artificial neural network for an adjustment and tuning process for the completed electronics devices is presented. Multi-layer neural network model is employed with the learning method of error back-propagation. For the intelligent control of adjustment and tuning process, the neural network emulator (NNE) and the neural network controller(NNC) are developed. Computer simulation reveals that the intelligent controllers designed can function very effectively as tools for computer aided adjustment system. The applications of the controllers to the real systems are also demonstrated.

  • PDF

심층신경망을 이용한 조음 예측 모형 개발 (Development of articulatory estimation model using deep neural network)

  • 유희조;양형원;강재구;조영선;황성하;홍연정;조예진;김서현;남호성
    • 말소리와 음성과학
    • /
    • 제8권3호
    • /
    • pp.31-38
    • /
    • 2016
  • Speech inversion (acoustic-to-articulatory mapping) is not a trivial problem, despite the importance, due to the highly non-linear and non-unique nature. This study aimed to investigate the performance of Deep Neural Network (DNN) compared to that of traditional Artificial Neural Network (ANN) to address the problem. The Wisconsin X-ray Microbeam Database was employed and the acoustic signal and articulatory pellet information were the input and output in the models. Results showed that the performance of ANN deteriorated as the number of hidden layers increased. In contrast, DNN showed lower and more stable RMS even up to 10 deep hidden layers, suggesting that DNN is capable of learning acoustic-articulatory inversion mapping more efficiently than ANN.

인공신경망 부싱모델을 사용한 전차량 동역학 시뮬레이션 (Vehicle Dynamic Simulation Using the Neural Network Bushing Model)

  • 손정현;강태호;백운경
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.110-118
    • /
    • 2004
  • In this paper, a blackbox approach is carried out to model the nonlinear dynamic bushing model. One-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop an empirical bushing model with an artificial neural network. The back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra's algorithm of ‘NARMAX’ form is employed in the neural network bushing module. A numerical example is carried out to verify the developed bushing model.

신경회로망을 이용한 154kV 변전소의 고장 위치 판별 기법 (Fault Location Technique of 154 kV Substation using Neural Network)

  • 안종복;강태원;박철원
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1146-1151
    • /
    • 2018
  • Recently, researches on the intelligence of electric power facilities have been trying to apply artificial intelligence techniques as computer platforms have improved. In particular, faults occurring in substation should be able to quickly identify possible faults and minimize power fault recovery time. This paper presents fault location technique for 154kV substation using neural network. We constructed a training matrix based on the operating conditions of the circuit breaker and IED to identify the fault location of each component of the target 154kV substation, such as line, bus, and transformer. After performing the training to identify the fault location by the neural network using Weka software, the performance of fault location discrimination of the designed neural network was confirmed.