• 제목/요약/키워드: Artificial Neural Networks(ANNs)

검색결과 160건 처리시간 0.03초

AN ARTIFICIAL NEURAL NETWORK MODEL FOR THE CONDITION RATING OF BRIDGES

  • Jaeho Lee;Kamal Sanmugarasa;Michael Blumenstein
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.533-538
    • /
    • 2005
  • An outline of an Artificial Neural Network (ANN) model for bridge condition rating and the results of a pilot study are presented in this paper. Most BMS implementation systems involve an extensive range of data collection to operate accurately. It takes many years to effectively implement a BMS using existing methodologies. This is due to unmatched data requirements. Such problems can be overcome by adopting the ANN model presented in this paper. The objective of the proposed model is to predict bridge condition ratings using historical bridge inspection data for effective BMS operation.

  • PDF

ANN Synthesis Models Trained with Modified GA-LM Algorithm for ACPWs with Conductor Backing and Substrate Overlaying

  • Wang, Zhongbao;Fang, Shaojun;Fu, Shiqiang
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.696-705
    • /
    • 2012
  • Accurate synthesis models based on artificial neural networks (ANNs) are proposed to directly obtain the physical dimensions of an asymmetric coplanar waveguide with conductor backing and substrate overlaying (ACPWCBSO). First, the ACPWCBSO is analyzed with the conformal mapping technique (CMT) to obtain the training data. Then, a modified genetic-algorithm-Levenberg-Marquardt (GA-LM) algorithm is adopted to train ANNs. In the algorithm, the maximal relative error (MRE) is used as the fitness function of the chromosomes to guarantee that the MRE is small, while the mean square error is used as the error function in LM training to ensure that the average relative error is small. The MRE of ANNs trained with the modified GA-LM algorithm is less than 8.1%, which is smaller than those trained with the existing GA-LM algorithm and the LM algorithm (greater than 15%). Lastly, the ANN synthesis models are validated by the CMT analysis, electromagnetic simulation, and measurements.

Artificial Neural Network Prediction of Normalized Polarity Parameter for Various Solvents with Diverse Chemical Structures

  • Habibi-Yangjeh, Aziz
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권9호
    • /
    • pp.1472-1476
    • /
    • 2007
  • Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized polarity parameter (ETN) of 216 various solvents with diverse chemical structures using a quantitative-structure property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (μ) and polarizability term (πI) are input descriptors and its output is ETN. It is found that properly selected and trained neural network with 192 solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the ETN values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the fact that the ETN of solvents shows non-linear correlations with the molecular descriptors.

Development of the Boated Length to Diameter Correction Factor on Critical Heat Flux Using the Artificial Neural Networks

  • Lee, Yong-Ho;Chun, Tae-Hyun;Beak, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.443-448
    • /
    • 1998
  • With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux(CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiment for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy fur the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data.

  • PDF

신호교차로 대기행렬 예측을 위한 인공신경망의 학습자료 구성분석 (Training Sample of Artificial Neural Networks for Predicting Signalized Intersection Queue Length)

  • 한종학;김성호;최병국
    • 대한교통학회지
    • /
    • 제18권4호
    • /
    • pp.75-85
    • /
    • 2000
  • 본 연구에서는 도시부도로 신호교차로의 대기행렬을 단기(one cycle ahead)예측함에 있어 단일검지체계에 기반을 둔 한 지점의 시계열적 패턴을 갖는 검지자료(detection data)를 학습자료로 구성할 경우와 통합차량검지체계하에 기반을 둔 시공간적 상관관계를 갖는 검지자료를 학습자료로 이용할 경우를 가정하여 이에 대한 인공신경망의 학습능력과 예측능력을 비교하였다. 연구결과는 도시부도로 신호교차로상에서 차량군(platoon)의 이동에 따라 발생되는 시공간적인 상관관계를 갖는 교통류변수 $\ulcorner$상류유입교통량(k-1)->통행시간(k-1)->대기행렬(k)->유출교통량(k)->대기행렬(k+1)$\lrcorner$를 인공신경망의 학습자료로 구성할 경우, 교통류 패턴의 학습능력이 뛰어난 것으로 밝혀졌다.

  • PDF

Modeling of surface roughness in electro-discharge machining using artificial neural networks

  • Cavaleri, Liborio;Chatzarakis, George E.;Trapani, Fabio Di;Douvika, Maria G.;Roinos, Konstantinos;Vaxevanidis, Nikolaos M.;Asteris, Panagiotis G.
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.169-184
    • /
    • 2017
  • Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.

Multivariate Auxiliary Channel Classification using Artificial Neural Networks for LIGO Gravitational-Wave Detector

  • 오상훈;;김영민;이창환
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.131.2-131.2
    • /
    • 2011
  • We present performance of artificial neural network multivariate classifier in identifying non-astrophysical origin noise transients from the gravitational wave channel of Laser Interferometer Gravitational-wave Observatory (LIGO). LIGO has successfully conducted six science runs, achieving the sensitivity as planned and producing many fruitful scientific results. It has been well observed that the detector noise is non-Gaussian and non-stationary, which results in large excess of noise transients called glitches arising from instrumental and environmental artifacts. Great efforts have been committed to reduce the glitches by tuning the detector instruments and by vetoing them but further improvement is still needed. To this end, there have been efforts to incorporate data from hundreds of auxiliary, physical and environmental channels into identifying the glitches in the gravitational wave channel. We introduce a multivariate classification method using Artificial Neural Networks (ANNs) that efficiently handles large number of variables. In this poster, we present preliminary results of the application of our ANN algorithm to data from LIGO's Science Run 4 and compare its performance with conventional vetoing method.

  • PDF

Design of tensegrity structures using artificial neural networks

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.223-235
    • /
    • 2008
  • This paper focuses on the application of artificial neural networks (ANN) for optimal design of tensegrity grid as light-weight roof structures. A tensegrity grid, 2 m ${\times}$ 2 m in size, is fabricated by integrating four single tensegrity modules based on half-cuboctahedron configuration, using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. The structure is subjected to destructive load test during which continuous monitoring of the prestress levels, key deflections and strains in the struts and the cables is carried out. The monitored structure is analyzed using finite element method (FEM) and the numerical model verified and updated with the experimental observations. The paper then explores the possibility of applying ANN based on multilayered feed forward back propagation algorithm for designing the tensegrity grid structure. The network is trained using the data generated from a finite element model of the structure validated through the physical test. After training, the network output is compared with the target and reasonable agreement is found between the two. The results demonstrate the feasibility of applying the ANNs for design of the tensegrity structures.

Application of Artificial Neural Networks to Predict Dynamic Responses of Wing Structures due to Atmospheric Turbulence

  • Nguyen, Anh Tuan;Han, Jae-Hung;Nguyen, Anh Tu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.474-484
    • /
    • 2017
  • This paper studies the applicability of an efficient numerical model based on artificial neural networks (ANNs) to predict the dynamic responses of the wing structure of an airplane due to atmospheric turbulence in the time domain. The turbulence velocity is given in the form of a stationary Gaussian random process with the von Karman power spectral density. The wing structure is modeled by a classical beam considering bending and torsional deformations. An unsteady vortex-lattice method is applied to estimate the aerodynamic pressure distribution on the wing surface. Initially, the trim condition is obtained, then structural dynamic responses are computed. The numerical solution of the wing structure's responses to a random turbulence profile is used as a training data for the ANN. The current ANN is a three-layer network with the output fed back to the input layer through delays. The results from this study have validated the proposed low-cost ANN model for the predictions of dynamic responses of wing structures due to atmospheric turbulence. The accuracy of the predicted results by the ANN was discussed. The paper indicated that predictions for the bending moments are more accurate than those for the torsional moments of the wing structure.

Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks

  • Nehdi, M.;El Chabib, H.;Said, A.
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.81-100
    • /
    • 2006
  • To calculate the shear capacity of concrete beams reinforced with fibre-reinforced polymer (FRP), current shear design provisions use slightly modified versions of existing semi-empirical shear design equations that were primarily derived from experimental data generated on concrete beams having steel reinforcement. However, FRP materials have different mechanical properties and mode of failure than steel, and extending existing shear design equations for steel reinforced beams to cover concrete beams reinforced with FRP is questionable. This paper investigates the feasibility of using artificial neural networks (ANNs) to estimate the nominal shear capacity, Vn of concrete beams reinforced with FRP bars. Experimental data on 150 FRP-reinforced beams were retrieved from published literature. The resulting database was used to evaluate the validity of several existing shear design methods for FRP reinforced beams, namely the ACI 440-03, CSA S806-02, JSCE-97, and ISIS Canada-01. The database was also used to develop an ANN model to predict the shear capacity of FRP reinforced concrete beams. Results show that current guidelines are either inadequate or very conservative in estimating the shear strength of FRP reinforced concrete beams. Based on ANN predictions, modified equations are proposed for the shear design of FRP reinforced concrete beams and proved to be more accurate than existing equations.