• Title/Summary/Keyword: Artificial Neural Network Analysis

Search Result 1,007, Processing Time 0.029 seconds

인공신경망과 수치해석을 이용한 NATM터널의 비선형 거동 분석 (Non-Linear Deformation Analysis of NATM Tunnel using Artificial Neural Network and Computational Methods)

  • 이재호;김영수;아쿠타가와 신니치;문홍득;전영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.59-70
    • /
    • 2008
  • 도심지 터널의 설계, 시공 그리고 유지관리에 있어서 지반 변위 억제와 변형거동 예측은 중요하다. 국내 외 연구자들은 다양한 수치해석적인 기법과 현장 계측 결과를 이용하여 터널 시공과 관련된 변형거동 예측을 시도하였다. 하지만, 설계물성치의 산정과 지반 모델링 그리고 수치해석기법과 관련된 사용상의 어려움에 의해 아직까지 만족스러운 결과를 얻지는 못하였다. 본 논문은 수치해석적인 기법과 인공신경망을 이용하여 도심지 NATM 터널의 설계 물성치 산정과 변형거동 예측에 관한 방법을 제안하였다. 인공신경망 모델 개발을 위한 학습과 테스트과정은 데이터베이스된 수치해석결과를 이용하였다. 개발된 인공신경망 모델은 입력변수인 지반변위와 결과변수인 설계 물성치 간의 상호관계를 적절히 인식할 수 있다. 수치해석은 지반의 연화거동을 모사할 수 있는 변형률 연화모델을 적용하였다. 사례분석에 있어서 굴착 초기단계의 계측 값을 개발된 인공신경망 모델에 입력하여 설계 물성치를 계산하였으며, 수정된 설계 물성치는 수치해석을 통하여 다음 굴착단계에서의 터널 주변의 지반 변형거동을 예측하였다. 본 논문에서 제안된 방법을 토대로 시공조건이 엄밀한 도심지 터널의 설계물성치의 정량적인 평가 및 변형거동 예측이 계측이 입수된 초기 굴착단계에서 가능할 것으로 기대된다.

  • PDF

컬러와 패턴을 이용한 텍스타일 영상에서의 감정인식 시스템 (Emotion Recognition Using Color and Pattern in Textile Images)

  • 신윤희;김영래;김은이
    • 전자공학회논문지CI
    • /
    • 제45권6호
    • /
    • pp.154-161
    • /
    • 2008
  • 본 논문에서는 컬러와 패턴 정보를 이용하여 텍스타일 영상에 포함된 감성을 자동으로 인식할 수 있는 방법을 제안한다. 이때, 감성을 표현하기 위해 고바야시의 10가지 감성 그룹 - {romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modern}- 을 이용한다. 제안된 시스템은 특징 추출과 분류로 구성된다. 특징 추출 단계에서는 주관적인 감성을 물리적인 영상 특징으로 표현하기 위해 텍스타일을 구성하는 대표 컬러와 패턴을 추출 한다. 이 때 대표 컬러를 추출하기 위해서 양자화 기법을 이용하고, 패턴정보를 표현하기 위해서는 웨이블릿 변환 후의 통계적인 정보를 이용한다 추출된 컬러와 패턴 특징은 신경망을 이용한 분류기의 입력으로 사용되고, 분류기를 통해 입력 텍스타일이 임의의 감성을 가지는지 여부가 결정된다. 제안된 감성인식 방법의 효율성을 증명하기 위해서 인위적인 도메인, 패션 도메인, 인테리어 도메인에서 얻어진 389장의 텍스타일 영상에서 실험하였다. 다양한 도메인의 영상에 대해 사용된 결과 제안된 방법은 100%의 정확도와 99%의 재현율을 보였다. 이러한 실험 결과는 제안된 감성인식 방법이 다양한 텍스타일 관련 산업분야에 일반화되어 사용될 수 있음을 보여주었다.

TBM 세그먼트 라이닝 최적 설계 시스템 개발 (Development of optimized TBM segmental lining design system)

  • 우승주;정은목;유충식
    • 한국터널지하공간학회 논문집
    • /
    • 제18권1호
    • /
    • pp.13-30
    • /
    • 2016
  • 본 연구에서는 해저 터널의 특수성을 고려한 TBM 세그먼트 라이닝의 최적 설계 시스템을 개발하였다. 해저 터널은 일반적으로 일정 수압 하의 토사나 암반 등으로 구성된 해저 지반 내에 시공된다. 본 설계 시스템은 특정 해저 터널 단면에서의 지반 조건, 시공 조건 및 터널 조건을 고려하여 인공신경망 기반의 세그먼트 라이닝 부재력 예측 시스템을 구축하고, 시공성이 확보된 단면 DB를 구축하여 해저터널에서 최적 단면 설계가 가능하도록 구성하였다. 결과적으로 본 시스템은 해저 터널 설계에 사용되는 BIM과 연동되어 자동으로 설계가 가능하도록 하였다. 단면 검토 및 설계에 사용되는 세그먼트 라이닝 부재력 예측은 유한요소해석을 토대로 구축한 인공신경망을 통해 일반화한 후 BIM 시스템에 접목시켜 별도의 추가 해석이 필요없이 유사 단면의 해저 터널 설계에 적용이 가능하도록 하였다.

절대 유사 임계값 기반 사례기반추론과 유전자 알고리즘을 활용한 시스템 트레이딩 (System Trading using Case-based Reasoning based on Absolute Similarity Threshold and Genetic Algorithm)

  • 한현웅;안현철
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제26권3호
    • /
    • pp.63-90
    • /
    • 2017
  • Purpose This study proposes a novel system trading model using case-based reasoning (CBR) based on absolute similarity threshold. The proposed model is designed to optimize the absolute similarity threshold, feature selection, and instance selection of CBR by using genetic algorithm (GA). With these mechanisms, it enables us to yield higher returns from stock market trading. Design/Methodology/Approach The proposed CBR model uses the absolute similarity threshold varying from 0 to 1, which serves as a criterion for selecting appropriate neighbors in the nearest neighbor (NN) algorithm. Since it determines the nearest neighbors on an absolute basis, it fails to select the appropriate neighbors from time to time. In system trading, it is interpreted as the signal of 'hold'. That is, the system trading model proposed in this study makes trading decisions such as 'buy' or 'sell' only if the model produces a clear signal for stock market prediction. Also, in order to improve the prediction accuracy and the rate of return, the proposed model adopts optimal feature selection and instance selection, which are known to be very effective in enhancing the performance of CBR. To validate the usefulness of the proposed model, we applied it to the index trading of KOSPI200 from 2009 to 2016. Findings Experimental results showed that the proposed model with optimal feature or instance selection could yield higher returns compared to the benchmark as well as the various comparison models (including logistic regression, multiple discriminant analysis, artificial neural network, support vector machine, and traditional CBR). In particular, the proposed model with optimal instance selection showed the best rate of return among all the models. This implies that the application of CBR with the absolute similarity threshold as well as the optimal instance selection may be effective in system trading from the perspective of returns.

영화 흥행 결정 요인과 흥행 성과 예측 연구 (A Study for the Development of Motion Picture Box-office Prediction Model)

  • 김연형;홍정한
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.859-869
    • /
    • 2011
  • 영화의 흥행 결정 요인에 대한 학문적 연구와 함께 상업적 시각에서 개별 영화의 흥행 예측에 대한 관심이 증대되고 있다. 본 연구는 2010년 한국에서 개봉된 영화를 대상으로 영화 흥행에 영향을 미치는 요인들과 영화 흥행 성과간의 관계를 분석하였다. 제작 전 투자 의사결정단계에서 영화 장르, 관람등급, 감독, 배우가 통계적으로 유의한 결과를 보였으며, 배급편성의 의사결정단계에서는 배우효과, 스크린수, 배급사파워, 소셜미디어가 통계적으로 유의한 결과를 나타내고 있다. 선택확률개념을 이용한 다항로짓모형을 통해 영화 흥행작의 성과에 영향을 미치는 요인을 검증하였으며, 인공신경망, 판별분석과 비교하여 다항로짓모형의 흥행영화 예측력을 입증하였다.

학계와 산업계의 정보 대중성 변동과 인용 정보에 기반한 최신 기술 동향 식별 시스템 (An Emerging Technology Trend Identifier Based on the Citation and the Change of Academic and Industrial Popularity)

  • 김선호;이준규;와카스 라시드;여운동
    • 기술혁신학회지
    • /
    • 제14권spc호
    • /
    • pp.1171-1186
    • /
    • 2011
  • 본 연구는 대용량 학술 및 특허 데이터 분석을 기본으로하여 중소 기업이 필요로 하는 유망기술을 도출하는 모형을 제시하고자 하였다. 유망기술 발굴은 국가와 기관의 주요 결정권자가 시간이나 돈과 같은 제한된 자원을 효과적으로 사용할 수 있게 하기 위한 중요한 연구이다. 많은 연구자들이 유망기술 발굴 방법에 대한 연구를 수행하고 있고 모델을 제시하고 있지만 아직까지 더 향상된 방법론의 개발이 필요하다. 이 논문은 학계와 산업계의 데이터를 동시에 이용하여 주어진 기술의 유망 기술 여부를 판단하는 모델을 제안한다. 대부분의 다른 유망기술 발굴 모델과는 다르게 이 논문에서 제안하는 모델은 완전자동 학습 방식이 아닌, 전문가가 개입하는 준-자동 학습 방식의 기계 학습 방법을 이용한다. 이는 학습 속도을 양보하고 대신 정확성을 높이기 위한 방법으로 유망기술 발굴 시스템의 원래 목적에 적당하다. 또한 이 모델은 유망기술 초기 신호를 감지하기 위해 학술 데이터의 인용정보를 분석하여 학습하도록 하였다.

  • PDF

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

PM10 예측 성능 향상을 위한 이진 분류 모델 비교 분석 (Comparative Analysis of the Binary Classification Model for Improving PM10 Prediction Performance)

  • 정용진;이종성;오창헌
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.56-62
    • /
    • 2021
  • 미세먼지 예보에 대한 높은 정확도가 요구됨에 따라 기계 학습의 알고리즘을 적용하여 예측 정확도를 높이려는 다양한 시도들이 이루어지고 있다. 그러나 미세먼지의 특성과 불균형적인 농도별 발생 비율에 대한 문제로 예측 모델의 학습 및 예측이 잘 이루어지지 않는다. 이러한 문제를 해결하기 위해 특정 농도를 기준으로 미세먼지를 저농도와 고농도로 구분하여 예측을 수행하는 등 다양한 연구가 진행되고 있다. 본 논문에서는 미세먼지 농도의 불균형 특성으로 인한 예측 성능 향상의 문제를 해결하기 위한 미세먼지 농도의 이진 분류 모델을 제안하였다. 분류 알고리즘 중 logistic regression, decision tree, SVM 및 MLP를 이용하여 PM10에 대한 이진분류 모델들을 설계하였다. 오차 행렬을 통해 성능을 비교한 결과, 4가지 모델 중 MLP 모델이 89.98%의 정확도로 가장 높은 이진 분류 성능을 보였다.

딥러닝 기반의 객체 검출을 이용한 상대적 거리 예측 및 접촉 감지 (Contact Detection based on Relative Distance Prediction using Deep Learning-based Object Detection)

  • 홍석미;선경희;유현
    • 융합정보논문지
    • /
    • 제12권1호
    • /
    • pp.39-44
    • /
    • 2022
  • 본 연구의 목적은 딥러닝 알고리즘을 이용하여 영상 내 객체의 종류, 위치, 절대 크기를 추출하고, 객체간 상대적 거리를 예측하며, 이를 이용하여 객체 간의 접촉을 감지하기 위한 내용이다. 객체의 크기 비율을 분석하기 위하여, CNN 기반의 Object Detection 알고리즘인 YOLO를 이용한다. YOLO 알고리즘을 통하여 2D 형태의 이미지에서 각 개체의 절대적인 크기와 위치를 좌표의 형태로 추출한다. 추출 결과는 사전에 저장된 동일한 객체의 명칭과 크기를 가지는 표준 객체-크기 리스트로부터 영상 내 크기와 실제 크기 간의 비례를 추출하며, 영상 내 카메라-객체 간의 상대적인 거리를 예측한다. 예측된 값을 바탕으로 영상에서 객체 간 접촉 여부를 감지한다.

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.