• Title/Summary/Keyword: Artificial Neural Network

Search Result 3,032, Processing Time 0.032 seconds

Comparison between Possibilistic c-Means (PCM) and Artificial Neural Network (ANN) Classification Algorithms in Land use/ Land cover Classification

  • Ganbold, Ganchimeg;Chasia, Stanley
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.7 no.1
    • /
    • pp.57-78
    • /
    • 2017
  • There are several statistical classification algorithms available for land use/land cover classification. However, each has a certain bias or compromise. Some methods like the parallel piped approach in supervised classification, cannot classify continuous regions within a feature. On the other hand, while unsupervised classification method takes maximum advantage of spectral variability in an image, the maximally separable clusters in spectral space may not do much for our perception of important classes in a given study area. In this research, the output of an ANN algorithm was compared with the Possibilistic c-Means an improvement of the fuzzy c-Means on both moderate resolutions Landsat8 and a high resolution Formosat 2 images. The Formosat 2 image comes with an 8m spectral resolution on the multispectral data. This multispectral image data was resampled to 10m in order to maintain a uniform ratio of 1:3 against Landsat 8 image. Six classes were chosen for analysis including: Dense forest, eucalyptus, water, grassland, wheat and riverine sand. Using a standard false color composite (FCC), the six features reflected differently in the infrared region with wheat producing the brightest pixel values. Signature collection per class was therefore easily obtained for all classifications. The output of both ANN and FCM, were analyzed separately for accuracy and an error matrix generated to assess the quality and accuracy of the classification algorithms. When you compare the results of the two methods on a per-class-basis, ANN had a crisper output compared to PCM which yielded clusters with pixels especially on the moderate resolution Landsat 8 imagery.

Development of intelligent fault diagnostic system for mechanical element of wind power generator (지능형 풍력발전 기계적 요소 고장진단 시스템 개발)

  • Moon, Dea-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • Recently, a rapid growth of wind power system as a leading renewable energy source has compelled a number of companies to develop intelligent monitoring and diagnostic system. Such systems can detect early mechanical faults, which prevents from costly repairs. Generally, fault diagnostic system for wind turbines is based on vibration and process signal analysis. In this work, different type of mechanical faults such as mass unbalance and shaft misalignment which can always happen in wind turbine system is considered. The proposed intelligent fault diagnostic algorithm utilizes artificial neural network and Wavelet transform. In order to verify the feasibility of the proposed algorithm, mechanical fault generation experimental system manufactured by Gaon corporation is utilized.

Depth Controller Design for Submerged Body Moving near Free Surface Based on Adaptive Control (적응제어기법을 이용한 수면근처에서 운항하는 몰수체의 심도제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan;Yoon, Hyeon Kyu;Kim, Su Yong;Cho, Hyeonjin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.270-282
    • /
    • 2015
  • A submerged body moving near the free surface needs to maintain its attitude and position to accomplish missions. It is necessary to validate the performance of a designed controller before a sea trial. The hydrodynamic coefficients of maneuvering are generally obtained by experiments or computational fluid dynamics, but these coefficients have uncertainty. Environmental loads such as the wave exciting force and suction force act on the submerged body when it moves near the free surface. Thus, a controller for the submerged body should be robust to parameter uncertainty and environmental loads. In this paper, the six-degree-of-freedom equations of motions for the submerged body are constructed. The suction force is calculated using the double Rankine body method. An adaptive control method based on an artificial neural network and proportional-integral-derivative control are used for the depth controller. Simulations are performed under various depth and speed conditions, and the results show the effectiveness of the designed controller.

Development of Wind Speed Estimator for Wind Turbine Generation System (풍력발전 시스템을 위한 풍속 추정기 개발)

  • Kim, Byung-Moon;Kim, Sung-Ho;Song, Hwa-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.710-715
    • /
    • 2010
  • As wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. The wind speed has a huge impact on the dynamic response of wind turbine. For this purpose, many control algorithms are in need for a method to measure wind speed to increase performance. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper, a new method based on Kalman filter and artificial neural network is presented for the estimation of the effective wind speed. To verify the performance of the proposed scheme, some simulation studies are carried out.

Development of Seismic Fragility Curves for Slopes Using ANN-based Response Surface (인공신경망 기반의 응답면 기법을 이용한 사면의 지진에 대한 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.31-42
    • /
    • 2016
  • Usually the seismic stability analysis of slope uses the pseudostatic analysis considering the inertial force by the earthquake as a static load. Geostructures such as slope include the uncertainty of soil properties. Therefore, it is necessary to consider probabilistic method for stability analysis. In this study, the probabilistic stability analysis of slope considering the uncertainty of soil properties has been performed. The fragility curve that represents the probability of exceeding limit state of slope as a function of the ground motion has been established. The Monte Carlo Simulation (MCS) has been implemented to perform the probabilistic stability analysis of slope with pseudostatic analysis. A procedure to develop the fragility curve by the pseudostatic horizontal acceleration has been presented by calculating the probability of failure based on the Artificial Neural Network (ANN) based response surface technique that reduces the required time of MCS. The results showed that the proposed method can get the fragility curve that is similar to the direct MCS-based fragility curve, and can be efficiently used to reduce the analysis time.

The control method on environment in pen using artificial neural network (인공신경망을 이용한 축사 환경 제어 방안)

  • Min, J.H.;Huh, M.Y.;Park, J.Y.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.563-566
    • /
    • 2017
  • In order to prevent livestock diseases and produce the high quality livestock products in the livestock industry, it is necessary to manage the conditions of the livestock farms in the optimal condition. Therefore, these days the research on livestock growth models that analyze the factors of the air environment, the breeding environment, and the numerical rules of livestock in vivo is being carried out to improve and manage the environment in which livestock are kept. However, conventional models of growth are not sufficient to support the decision-making to control complex environment in pen by analyzing and interpreting air environment and breeding environment in a complex way. In this paper, we propose a method to control the complex environment in pen by using artificial neural network model based on biological information, air environment, breeding environment and production information.

  • PDF

An Efficient Multi-Attribute Negotiation System using Learning Agents for Reciprocity (상호 이익을 위한 학습 에이전트 기반의 효율적인 다중 속성 협상 시스템)

  • Park, Sang-Hyun;Yang, Sung-Bong
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.731-740
    • /
    • 2004
  • In this paper we propose a fast negotiation agent system that guarantees the reciprocity of the attendants in a bilateral negotiation on the e-commerce. The proposednegotiation agent system exploits the incremental learning method based on an artificial neural network in generating a counter-offer and is trained by the previous offer that has been rejected by the other party. During a negotiation, the software agents on behalf of a buyer and a seller negotiate each other by considering the multi-attributes of a product. The experimental results show that the proposed negotiation system achieves better agreements than other negotiation agent systems that are operated under the realistic and practical environment. Furthermore, the proposed system carries out negotiations about twenty times faster than the previous negotiation systems on the average.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

Development of Data Mining Algorithm for Implementation of Fine Dust Numerical Prediction Model (미세먼지 수치 예측 모델 구현을 위한 데이터마이닝 알고리즘 개발)

  • Cha, Jinwook;Kim, Jangyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.595-601
    • /
    • 2018
  • Recently, as the fine dust level has risen rapidly, there is a great interest. Exposure to fine dust is associated with the development of respiratory and cardiovascular diseases and has been reported to increase death rate. In addition, there exist damage to fine dusts continues at industrial sites. However, exposure to fine dust is inevitable in modern life. Therefore, predicting and minimizing exposure to fine dust is the most efficient way to reduce health and industrial damages. Existing fine dust prediction model is estimated as good, normal, poor, and very bad, depending on the concentration range of the fine dust rather than the concentration value. In this paper, we study and implement to predict the PM10 level by applying the Artificial neural network algorithm and the K-Nearest Neighbor algorithm, which are machine learning algorithms, using the actual weather and air quality data.

A Study on Distance Relay of Transmission UPFC Using Artificial Neural Network (신경회로망을 이용한 UPFC가 연계된 송전선로의 거리계전기에 관한 연구)

  • Lee, Jun-Kyong;Park, Jeong-Ho;Lee, Seung-Hyuk;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.37-44
    • /
    • 2004
  • This paper represents a new approach for the protective relay of power transmission lines using a Artificial Neural Network(ANN). A different fault m transmission lines need to be detected classified and located accurately and cleared as fast as possible. However, The protection range of the distance relay is always designed on the basis of fixed settings, and unfortunately these approach do not have the ability to adapt dynamically to the system operating condition. ANN is suitable for the adaptive relaying and the detection of complex faults. The backpropagation algerian based multi-layer protection is utilized for the teaming process. It allows to make control to various protection functions. As expected, the simulation result demonstrate that this approach is useful and satisfactory.