• Title/Summary/Keyword: Artificial Neural Net

Search Result 154, Processing Time 0.028 seconds

Interworking technology of neural network and data among deep learning frameworks

  • Park, Jaebok;Yoo, Seungmok;Yoon, Seokjin;Lee, Kyunghee;Cho, Changsik
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.760-770
    • /
    • 2019
  • Based on the growing demand for neural network technologies, various neural network inference engines are being developed. However, each inference engine has its own neural network storage format. There is a growing demand for standardization to solve this problem. This study presents interworking techniques for ensuring the compatibility of neural networks and data among the various deep learning frameworks. The proposed technique standardizes the graphic expression grammar and learning data storage format using the Neural Network Exchange Format (NNEF) of Khronos. The proposed converter includes a lexical, syntax, and parser. This NNEF parser converts neural network information into a parsing tree and quantizes data. To validate the proposed system, we verified that MNIST is immediately executed by importing AlexNet's neural network and learned data. Therefore, this study contributes an efficient design technique for a converter that can execute a neural network and learned data in various frameworks regardless of the storage format of each framework.

PartitionTuner: An operator scheduler for deep-learning compilers supporting multiple heterogeneous processing units

  • Misun Yu;Yongin Kwon;Jemin Lee;Jeman Park;Junmo Park;Taeho Kim
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.318-328
    • /
    • 2023
  • Recently, embedded systems, such as mobile platforms, have multiple processing units that can operate in parallel, such as centralized processing units (CPUs) and neural processing units (NPUs). We can use deep-learning compilers to generate machine code optimized for these embedded systems from a deep neural network (DNN). However, the deep-learning compilers proposed so far generate codes that sequentially execute DNN operators on a single processing unit or parallel codes for graphic processing units (GPUs). In this study, we propose PartitionTuner, an operator scheduler for deep-learning compilers that supports multiple heterogeneous PUs including CPUs and NPUs. PartitionTuner can generate an operator-scheduling plan that uses all available PUs simultaneously to minimize overall DNN inference time. Operator scheduling is based on the analysis of DNN architecture and the performance profiles of individual and group operators measured on heterogeneous processing units. By the experiments for seven DNNs, PartitionTuner generates scheduling plans that perform 5.03% better than a static type-based operator-scheduling technique for SqueezeNet. In addition, PartitionTuner outperforms recent profiling-based operator-scheduling techniques for ResNet50, ResNet18, and SqueezeNet by 7.18%, 5.36%, and 2.73%, respectively.

Comparison of Deep Learning Models for Judging Business Card Image Rotation (명함 이미지 회전 판단을 위한 딥러닝 모델 비교)

  • Ji-Hoon, Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.34-40
    • /
    • 2023
  • A smart business card printing system that automatically prints business cards requested by customers online is being activated. What matters is that the business card submitted by the customer to the system may be abnormal. This paper deals with the problem of determining whether the image of a business card has been abnormally rotated by adopting artificial intelligence technology. It is assumed that the business card rotates 0 degrees, 90 degrees, 180 degrees, and 270 degrees. Experiments were conducted by applying existing VGG, ResNet, and DenseNet artificial neural networks without designing special artificial neural networks, and they were able to distinguish image rotation with an accuracy of about 97%. DenseNet161 showed 97.9% accuracy and ResNet34 also showed 97.2% precision. This illustrates that if the problem is simple, it can produce sufficiently good results even if the neural network is not a complex one.

Analysis of unfairness of artificial intelligence-based speaker identification technology (인공지능 기반 화자 식별 기술의 불공정성 분석)

  • Shin Na Yeon;Lee Jin Min;No Hyeon;Lee Il Gu
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • Digitalization due to COVID-19 has rapidly developed artificial intelligence-based voice recognition technology. However, this technology causes unfair social problems, such as race and gender discrimination if datasets are biased against some groups, and degrades the reliability and security of artificial intelligence services. In this work, we compare and analyze accuracy-based unfairness in biased data environments using VGGNet (Visual Geometry Group Network), ResNet (Residual Neural Network), and MobileNet, which are representative CNN (Convolutional Neural Network) models of artificial intelligence. Experimental results show that ResNet34 showed the highest accuracy for women and men at 91% and 89.9%in Top1-accuracy, while ResNet18 showed the slightest accuracy difference between genders at 1.8%. The difference in accuracy between genders by model causes differences in service quality and unfair results between men and women when using the service.

Multidisciplinary Design Optimization of 3-Stage Axial Compressorusing Artificial Neural Net (인공신경망 이론을 적용한 3단 축류압축기의 다분야 통합 최적설계)

  • Hong, Sang-Won;Lee, Sae-Il;Kang, Hyung-Min;Lee, Dong-Ho;Kang, Young-Seok;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.19-24
    • /
    • 2010
  • The demands for small, high performance and high loaded aircraft compressor are increased in the world. But the design requirements become increasingly complex to design these high technical engines, the requirement of the design optimization become increased. The optimal design result of several disciplines show different tendencies and nonlinear characteristics of the compressor design, the multidisciplinary design optimization method must be considered in compressor design. Therefore, the artificial Neural Net method is adapted to make the approximation model of 3-stage axial compressor design optimization for considering the nonlinear characteristic. At last, the optimal result of this study is compared to that of previous study.

Comparison of the BOD Forecasting Ability of the ARIMA model and the Artificial Neural Network Model (ARIMA 모형과 인공신경망모형의 BOD예측력 비교)

  • 정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, the water quality forecast was performed on the BOD of the Chungju Dam using the ARIMA model, which is a nonlinear statistics model, and the artificial neural network model. The monthly data of water quality were collected from 1991 to 2000. The most appropriate ARIMA model for Chungju dam was found to be the multiplicative seasonal ARIMA(1,0,1)(1,0,1)$_{12}$, model. While the artificial neural network model, which is used relatively often in recent days, forecasts new data by the strength of a learned matrix like human neurons. The BOD values were forecasted using the back-propagation algorithm of multi-layer perceptrons in this paper. Artificial neural network model was com- posed of two hidden layers and the node number of each hidden layer was designed fifteen. It was demonstrated that the ARIMA model was more appropriate in terms of changes around the overall average, but the artificial neural net-work model was more appropriate in terms of reflecting the minimum and the maximum values.s.

Improvement of the subcooled boiling model using a new net vapor generation correlation inferred from artificial neural networks to predict the void fraction profiles in the vertical channel

  • Tae Beom Lee ;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4776-4797
    • /
    • 2022
  • In the one-dimensional thermal-hydraulic (TH) codes, a subcooled boiling model to predict the void fraction profiles in a vertical channel consists of wall heat flux partitioning, the vapor condensation rate, the bubbly-to-slug flow transition criterion, and drift-flux models. Model performance has been investigated in detail, and necessary refinements have been incorporated into the Safety and Performance Analysis Code (SPACE) developed by the Korean nuclear industry for the safety analysis of pressurized water reactors (PWRs). The necessary refinements to models related to pumping factor, net vapor generation (NVG), vapor condensation, and drift-flux velocity were investigated in this study. In particular, a new NVG empirical correlation was also developed using artificial neural network (ANN) techniques. Simulations of a series of subcooled flow boiling experiments at pressures ranging from 1 to 149.9 bar were performed with the refined SPACE code, and reasonable agreement with the experimental data for the void fraction in the vertical channel was obtained. From the root-mean-square (RMS) error analysis for the predicted void fraction in the subcooled boiling region, the results with the refined SPACE code produce the best predictions for the entire pressure range compared to those using the original SPACE and RELAP5 codes.

Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks (다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교)

  • Kim, Sanghong;Lee, Bowon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.454-460
    • /
    • 2020
  • Artificial intelligence assistants that provide speech recognition operate through cloud-based voice recognition with high accuracy. In cloud-based speech recognition, Wake-Up-Word (WUW) detection plays an important role in activating devices on standby. In this paper, we compare the performance of Convolutional Neural Network (CNN)-based WUW detection models for mobile devices by using Google's speech commands dataset, using the spectrogram and mel-frequency cepstral coefficient features as inputs. The CNN models used in this paper are multi-layer perceptron, general convolutional neural network, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet. We also propose network that reduces the model size to 1/25 while maintaining the performance of MobileNet is also proposed.

Neural Net Application Test for the Damage Detection of a Scaled-down Steel Truss Bridge (축소모형 강트러스 교량의 손상검출을 위한 신경회로망의 적용성 검토)

  • Kim, Chi-Yeop;Kwon, Il-Bum;Choi, Man-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.137-147
    • /
    • 1998
  • The neural net application was tried to develop the technique for monitoring the health status of a steel truss bridge which was scaled down to 1/15 of the real bridge for the laboratory experiments. The damage scenarios were chosen as 7 cases. The dynamic behavior, which was changed due to the breakage of the members, of the bridge was investigated by finite element analysis. The bridge consists of single spam, and eight (8) main structural subsystems. The loading vehicle, which weighs as 100 kgf, was operated by the servo-motor controller. The accelerometers were bonded on the surface of 7 cross-beams to measure the dynamic behavior induced by the abnormal structural condition. Artificial neural network technique was used to determine the severity of the damage. At first, the neural net was learnt by the results of finite element analysis, and also, the maximum detection error was 3.65 percents. Another neural net was also learnt, and verified by the experimental results, and in this case, the maximum detection error was 1.05 percents. In future study, neural net is necessary to be learnt and verified by various data from the real bridge.

  • PDF

Multivariate CUSUM Chart to Monitor Correlated Multivariate Time-series Observations (상관된 시계열 자료 모니터링을 위한 다변량 누적합 관리도)

  • Lee, Kyu Young;Lee, Mi Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.539-550
    • /
    • 2021
  • Purpose: The purpose of this study is to propose a multivariate CUSUM control chart that can detect the out-of-control state fast while monitoring the cross- and auto- correlated multivariate time series data. Methods: We first build models to estimate the observation data and calculate the corresponding residuals. After then, a multivariate CUSUM chart is applied to monitor the residuals instead of the original raw observation data. Vector Autoregression and Artificial Neural Net are selected for the modelling, and Separated-MCUSUM chart is selected for the monitoring. The suggested methods are tested under a number of experimental settings and the performances are compared with those of other existing methods. Results: We find that Artificial Neural Net is more appropriate than Vector Autoregression for the modelling and show the combination of Separated-MCUSUM with Artificial Neural Net outperforms the other alternatives considered in this paper. Conclusion: The suggested chart has many advantages. It can monitor the complicated multivariate data with cross- and auto- correlation, and detects the out-of-control state fast. Unlike other CUSUM charts finding their control limits by trial and error simulation, the suggested chart saves lots of time and effort by approximating its control limit mathematically. We expect that the suggested chart performs not only effectively but also efficiently for monitoring the process with complicated correlations and frequently-changed parameters.