• 제목/요약/키워드: Artificial Intelligence Prediction Model

Search Result 423, Processing Time 0.022 seconds

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

Practical method to improve usage efficiency of bike-sharing systems

  • Lee, Chun-Hee;Lee, Jeong-Woo;Jung, YungJoon
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.244-259
    • /
    • 2022
  • Bicycle- or bike-sharing systems (BSSs) have received increasing attention as a secondary transportation mode due to their advantages, for example, accessibility, prevention of air pollution, and health promotion. However, in BSSs, due to bias in bike demands, the bike rebalancing problem should be solved. Various methods have been proposed to solve this problem; however, it is difficult to apply such methods to small cities because bike demand is sparse, and there are many practical issues to solve. Thus, we propose a demand prediction model using multiple classifiers, time grouping, categorization, weather analysis, and station correlation information. In addition, we analyze real-world relocation data by relocation managers and propose a relocation algorithm based on the analytical results to solve the bike rebalancing problem. The proposed system is compared experimentally with the results obtained by the real relocation managers.

Performance Comparison of LSTM-Based Groundwater Level Prediction Model Using Savitzky-Golay Filter and Differential Method (Savitzky-Golay 필터와 미분을 활용한 LSTM 기반 지하수 수위 예측 모델의 성능 비교)

  • Keun-San Song;Young-Jin Song
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.84-89
    • /
    • 2023
  • In water resource management, data prediction is performed using artificial intelligence, and companies, governments, and institutions continue to attempt to efficiently manage resources through this. LSTM is a model specialized for processing time series data, which can identify data patterns that change over time and has been attempted to predict groundwater level data. However, groundwater level data can cause sen-sor errors, missing values, or outliers, and these problems can degrade the performance of the LSTM model, and there is a need to improve data quality by processing them in the pretreatment stage. Therefore, in pre-dicting groundwater data, we will compare the LSTM model with the MSE and the model after normaliza-tion through distribution, and discuss the important process of analysis and data preprocessing according to the comparison results and changes in the results.

  • PDF

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

Prediction of Air Exchange Performance of an Air Purifier by Installation Location using Artificial Neural Network (인공신경망 기반 공기정화기 설치위치에 따른 공기교환성능 예측)

  • Kim, Na Kyong;Kang, Dong Hee;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.21-27
    • /
    • 2022
  • Air purifiers can be placed where the air cleaning is required, making it easy to manage indoor air quality. The position of the air purifier affects the indoor airflow pattern, resulting in different air cleaning efficiency. Many efforts and strategies have been examined through numerical simulations and experiments to find the proper location of the air purifier, but problems still remain due to the various geometrical indoor spaces and arrangements. Herein, we develop an artificial intelligence model to predict the performance of an air purifier depending on the installation location. To obtain the training data, numerical simulations were performed on the different locations of the air purifiers and airflow patterns. The trained artificial intelligence model predicted the air exchange performance depending on the installation location of the air purifier with a prediction accuracy of 92%.

Artificial-Neural-Network-based Night Crime Prediction Model Considering Environmental Factors

  • Lee, Juwon;Jeong, Yongwook;Jung, Sungwon
    • Architectural research
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • As the occurrence of a crime is dependent on different factors, their correlations are beyond the ordinary cognitive range. Owing to this limitation, systems face difficulty in correlating various factors, thereby requiring the assistance of artificial intelligence (AI) to overcome such limitations. Therefore, AI has become indispensable for crime prediction. Crimes can cause severe and irrevocable damage to a society. Recently, big data has been introduced for developing highly accurate models for crime prediction. Prediction of night crimes should be given significant consideration, because crimes primarily occur during nights, when the spatiotemporal characteristics become vulnerable to crimes. Many environmental factors that influence crime rate are applied for crime prediction, and their influence on crime rate may differ based on temporal characteristics and the nature of crime. This study aims to identify the environmental factors that influence sex and theft crimes occurring at night and proposes an artificial neural network (ANN) model to predict sex and theft crimes at night in random areas. The crime data of A district in Seoul for 12 years (2004-2015) was used, and environmental factors that influence sex and theft crimes were derived through multiple regression analysis. Two types of crime prediction models were developed: Type A using all environmental factors as input data; Type B with only the significant factors (obtained from regression analysis) as input data. The Type B model exhibited a greater accuracy than Type A, by 3.26 and 9.47 % higher for theft and sex crimes, respectively.

[Reivew]Prediction of Cervical Cancer Risk from Taking Hormone Contraceptivese

  • Su jeong RU;Kyung-A KIM;Myung-Ae CHUNG;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.25-29
    • /
    • 2024
  • In this study, research was conducted to predict the probability of cervical cancer occurrence associated with the use of hormonal contraceptives. Cervical cancer is influenced by various environmental factors; however, the human papillomavirus (HPV) is detected in 99% of cases, making it the primary attributed cause. Additionally, although cervical cancer ranks 10th in overall female cancer incidence, it is nearly 100% preventable among known cancers. Early-stage cervical cancer typically presents no symptoms but can be detected early through regular screening. Therefore, routine tests, including cytology, should be conducted annually, as early detection significantly improves the chances of successful treatment. Thus, we employed artificial intelligence technology to forecast the likelihood of developing cervical cancer. We utilized the logistic regression algorithm, a predictive model, through Microsoft Azure. The classification model yielded an accuracy of 80.8%, a precision of 80.2%, a recall rate of 99.0%, and an F1 score of 88.6%. These results indicate that the use of hormonal contraceptives is associated with an increased risk of cervical cancer. Further development of the artificial intelligence program, as studied here, holds promise for reducing mortality rates attributable to cervical cancer.

Design of Artificial Intelligence Water Level Prediction System for Prediction of River Flood (하천 범람 예측을 위한 인공지능 수위 예측 시스템 설계)

  • Park, Se-Hyun;Kim, Hyun-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.198-203
    • /
    • 2020
  • In this paper, we propose an artificial water level prediction system for small river flood prediction. River level prediction can be a measure to reduce flood damage. However, it is difficult to build a flood model in river because of the inherent nature of the river or rainfall that affects river flooding. In general, the downstream water level is affected by the water level at adjacent upstream. Therefore, in this study, we constructed an artificial intelligence model using Recurrent Neural Network(LSTM) that predicts the water level of downstream with the water level of two upstream points. The proposed artificial intelligence system designed a water level meter and built a server using Nodejs. The proposed neural network hardware system can predict the water level every 6 hours in the real river.

Use of automated artificial intelligence to predict the need for orthodontic extractions

  • Real, Alberto Del;Real, Octavio Del;Sardina, Sebastian;Oyonarte, Rodrigo
    • The korean journal of orthodontics
    • /
    • v.52 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Objective: To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records. Methods: The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions. Results: By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used. Conclusions: The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.