• Title/Summary/Keyword: Artificial Intelligence Model

Search Result 1,790, Processing Time 0.031 seconds

Development of Elementary Machine Learning Education Program to Solve Daily Life Problems Using Sound Data (소리 데이터를 기반으로 일상생활 문제를 해결하는 초등 머신러닝 교육 프로그램 개발)

  • Moon, Woojong;Ko, Seunghwan;Lee, Junho;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.705-712
    • /
    • 2021
  • This study aims to develop artificial intelligence education programs that can be easily applied in elementary schools according to the trend of the times called artificial intelligence. The training program designed the purpose and direction based on the analysis results of the needs of 70 elementary school teachers according to the steps of the ADDIE model. According to the survey, elementary school students developed a machine learning education program to set sound data as the theme of the most accessible in their daily lives and to learn the principles of artificial intelligence in solving problems using sound data in real life. These days, when the need for artificial intelligence education emerges, elementary machine learning education programs that solve daily life problems based on sound data developed in this study will lay the foundation for elementary artificial intelligence education.

Artificial intelligence application UX/UI study for language learning of children with articulation disorder (조음장애 아동의 언어학습을 위한 인공지능 애플리케이션 UX/UI 연구)

  • Yang, Eun-mi;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.174-176
    • /
    • 2022
  • In this paper, we present a mobile application for 'personalized customized learning' for children with articulation disorders using an artificial intelligence (AI) algorithm. A dataset (Data Set) to analyze, judge, and predict the learner's articulation situation and degree. In particular, we designed a prototype model by looking at how AI can be improved and advanced compared to existing applications from the UX/UI (GUI) aspect. So far, the focus has been on visual experience, but now it is an important time to process data and provide a UX/UI (GUI) experience to users. The UX/UI (GUI) of the proposed mobile application was to be provided according to the learner's articulation level and situation by using CRNN (Convolution Recurrent Neural Network) of DeepLearning and Auto Encoder GPT-3 (Generative Pretrained Transformer). The use of artificial intelligence algorithms will provide a learning environment with a high degree of perfection to children with articulation disorders, thereby enhancing the learning effect. I hope that you do not have any fear or discomfort in conversation by improving the perfection of articulation with 'personalized and customized learning'.

  • PDF

An Analysis of the International Trends of Research on Artificial Intelligence in Education Using Topic Modeling (인공지능 활용 교육의 토픽모델링 분석을 통한 수학교육 연구 방향의 함의)

  • Noh, Jihwa;Ko, Ho Kyoung;Kim, Byeongsoo;Huh, Nan
    • Journal of the Korean School Mathematics Society
    • /
    • v.26 no.1
    • /
    • pp.1-19
    • /
    • 2023
  • This study analyzed the international trends of research concerning artificial intelligence in education by examining 352 papers recently published in the International Journal of Artificial Intelligence in Education(IJAIED) with the topic modeling method. The IJAIED is the official, SCOPUS-indexed journal of the International AIED Society. The analysis revealed that international AIED research trends could be categorized into eight topics with topics such as analyzing student behavior model in learning systems and designing feedback to student solutions being increased over time, whereas research focusing on data handling methods was decreased over time. Based on the findings implications and suggestions for the research and development of the applications of AIED were provided.

Impact of Moral Intensity on Moral Behavior in the context of Artificial Intelligence: The Mediating Role of Technology Moral Sense

  • Wen Wu;Xiuqing Huang;Seth Y. Ntim;Yue Shen;Xinyu Li;GuoPeng Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1583-1598
    • /
    • 2024
  • With the popularization and application of artificial intelligence technology in daily life, new ethical and moral problems constantly appear in human society. These ethical and moral problems have been associated with people's moral behavior and have become crucial issues. In traditional social situations, researches have proved that moral intensity affects people's moral behavior. However, in the context of applying artificial intelligence technology, the mechanism between moral intensity and moral behavior is unknown. Therefore, this study focuses on the relationship between moral intensity and moral behavior in the context of applying artificial intelligence technology, and introduces a new concept - technology moral sense (TMS) into the theoretical model. Research method: We set various situations of applying artificial intelligence technology and adopt the situational experiment method to analyze the relationship between moral intensity and moral behavior in different application scenarios. The results show that moral intensity has a significant influence on moral behavior, while the technology moral sense performs a mediating function.

Prediction of compressive strength of lightweight mortar exposed to sulfate attack

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the results of experimental research, and artificial intelligence methods focused on determination of compressive strength of lightweight cement mortar with silica fume and fly ash after sulfate attack. The artificial neural network and the support vector machine were selected as artificial intelligence methods. Lightweight cement mortar mixtures containing silica fume and fly ash were prepared in this study. After specimens were cured in $20{\pm}2^{\circ}C$ waters for 28 days, the specimens were cured in different sulfate concentrations (0%, 1% $MgSO_4^{-2}$, 2% $MgSO_4^{-2}$, and 4% $MgSO_4^{-2}$ for 28, 60, 90, 120, 150, 180, 210 and 365 days. At the end of these curing periods, the compressive strengths of lightweight cement mortars were tested. The input variables for the artificial neural network and the support vector machine were selected as the amount of cement, the amount of fly ash, the amount of silica fumes, the amount of aggregates, the sulfate percentage, and the curing time. The compressive strength of the lightweight cement mortar was the output variable. The model results were compared with the experimental results. The best prediction results were obtained from the artificial neural network model with the Powell-Beale conjugate gradient backpropagation training algorithm.

A Study on Efficient AI Model Drift Detection Methods for MLOps (MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구)

  • Ye-eun Lee;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology develops and its practicality increases, it is widely used in various application fields in real life. At this time, the AI model is basically learned based on various statistical properties of the learning data and then distributed to the system, but unexpected changes in the data in a rapidly changing data situation cause a decrease in the model's performance. In particular, as it becomes important to find drift signals of deployed models in order to respond to new and unknown attacks that are constantly created in the security field, the need for lifecycle management of the entire model is gradually emerging. In general, it can be detected through performance changes in the model's accuracy and error rate (loss), but there are limitations in the usage environment in that an actual label for the model prediction result is required, and the detection of the point where the actual drift occurs is uncertain. there is. This is because the model's error rate is greatly influenced by various external environmental factors, model selection and parameter settings, and new input data, so it is necessary to precisely determine when actual drift in the data occurs based only on the corresponding value. There are limits to this. Therefore, this paper proposes a method to detect when actual drift occurs through an Anomaly analysis technique based on XAI (eXplainable Artificial Intelligence). As a result of testing a classification model that detects DGA (Domain Generation Algorithm), anomaly scores were extracted through the SHAP(Shapley Additive exPlanations) Value of the data after distribution, and as a result, it was confirmed that efficient drift point detection was possible.

Urinary Stones Segmentation Model and AI Web Application Development in Abdominal CT Images Through Machine Learning (기계학습을 통한 복부 CT영상에서 요로결석 분할 모델 및 AI 웹 애플리케이션 개발)

  • Lee, Chung-Sub;Lim, Dong-Wook;Noh, Si-Hyeong;Kim, Tae-Hoon;Park, Sung-Bin;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.11
    • /
    • pp.305-310
    • /
    • 2021
  • Artificial intelligence technology in the medical field initially focused on analysis and algorithm development, but it is gradually changing to web application development for service as a product. This paper describes a Urinary Stone segmentation model in abdominal CT images and an artificial intelligence web application based on it. To implement this, a model was developed using U-Net, a fully-convolutional network-based model of the end-to-end method proposed for the purpose of image segmentation in the medical imaging field. And for web service development, it was developed based on AWS cloud using a Python-based micro web framework called Flask. Finally, the result predicted by the urolithiasis segmentation model by model serving is shown as the result of performing the AI web application service. We expect that our proposed AI web application service will be utilized for screening test.

Automated Course of Action Evaluation for Military Decision-Making (지휘결심을 위한 자동 방책 평가)

  • Geewon Suh;Hyungkeun Yi;Minhyuk Kim;Byungjoo Kim;Moonhyun Lee;Jaewoo Baek;Changho Suh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.437-445
    • /
    • 2024
  • In future complex and diverse battlefield situations, the existing command system faces the challenge of delayed human judgement of strategy and low objectivity. This paper proposes an artificial intelligence model that takes situation information and course of action simulation results as input and automatically assigns scores to various evaluation elements and a comprehensive score. This tool is expected to assist the commander in making decisions, reduce the time required for making judgments, and promote impartial decision-making.

A Monitoring Scheme Based on Artificial Intelligence in Mobile Edge Cloud Computing Environments (모바일 엣지 클라우드 환경에서 인공지능 기반 모니터링 기법)

  • Lim, JongBeom;Choi, HeeSeok;Yu, HeonChang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.2
    • /
    • pp.27-32
    • /
    • 2018
  • One of the crucial issues in mobile edge cloud computing environments is to monitor mobile devices. Due to the inherit properties of mobile devices, they are prone to unstable behavior that leads to failures. In order to satisfy the service level agreement (SLA), the mobile edge cloud administrators should take appropriate measures through a monitoring scheme. In this paper, we propose a monitoring scheme of mobile devices based on artificial intelligence in mobile edge cloud computing environments. The proposed monitoring scheme is able to measure faults of mobile devices based on previous and current monitoring information. To this end, we adapt the hidden markov chain model, one of the artificial intelligence technologies, to monitor mobile devices. We validate our monitoring scheme based on the hidden markov chain model. The proposed monitoring scheme can also be used in general cloud computing environments to monitor virtual machines.

Study on Intention and Attitude of Using Artificial Intelligence Technology in Healthcare (보건의료분야에서의 인공지능기술(AI) 사용 의도와 태도에 관한 연구)

  • Kim, Jang-Mook
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.4
    • /
    • pp.53-60
    • /
    • 2017
  • The purpose of this study was to identify the factors affecting intention and attitude of artificial intelligence technology(AI) of university students in healthcare using UTAUT model. Participants were 278 college students and the data were collected through self-reported questionnaire from May 15 to June 14, 2016. The collected data were analyzed using PASW Statistics/AMOS 22.0. The results were as follows. The effect of expectation factor, social influence, usefulness of work, anxiety factor had a significant effect on use of AI technology Intention. Factor of expectation effect, social influence, usefulness of work, anxiety factor had a significant effect on use of AI technology. As a result of verifying the significance of the indirect effect, it can be seen that the direct effect of the anxiety factor on the attitude factor is partially mediated by the use intention factor and the intention to use was partially mediated in the direct effect of the usefulness factor of the task on the attitude factor. This result means that it is important to increase the expectation factors, social effects, and perceived usefulness through accurate information based on facts and to reduce vague anxiety in order to increase the positive intention and attitude of university students' use of AI technology.