• Title/Summary/Keyword: Artificial Intelligence Marketing

Search Result 94, Processing Time 0.019 seconds

The Effect of AI and Big Data on an Entry Firm: Game Theoretic Approach (인공지능과 빅데이터가 시장진입 기업에 미치는 영향관계 분석, 게임이론 적용을 중심으로)

  • Jeong, Jikhan
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.95-111
    • /
    • 2021
  • Despite the innovation of AI and Big Data, theoretical research bout the effect of AI and Big Data on market competition is still in early stages; therefore, this paper analyzes the effect of AI, Big Data, and data sharing on an entry firm by using game theory. In detail, the firms' business environments are divided into internal and external ones. Then, AI algorithms are divided into algorithms for (1) customer marketing, (2) cost reduction without automation, and (3) cost reduction with automation. Big Data is also divided into external and internal data. this study shows that the sharing of external data does not affect the incumbent firm's algorithms for consumer marketing while lessening the entry firm's entry barrier. Improving the incumbent firm's algorithms for cost reduction (with and without automation) and external data can be an entry barrier for the entry firm. These findings can be helpful (1) to analyze the effect of AI, Big Data, and data sharing on market structure, market competition, and firm behaviors and (2) to design policy for AI and Big Data.

Development and Verification of an AI Model for Melon Import Prediction

  • KHOEURN SAKSONITA;Jungsung Ha;Wan-Sup Cho;Phyoungjung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.29-37
    • /
    • 2023
  • Due to climate change, interest in crop production and distribution is increasing, and attempts are being made to use bigdata and AI to predict production volume and control shipments and distribution stages. Prediction of agricultural product imports not only affects prices, but also controls shipments of farms and distributions of distribution companies, so it is important information for establishing marketing strategies. In this paper, we create an artificial intelligence prediction model that predicts the future import volume based on the wholesale market melon import volume data disclosed by the agricultural statistics information system and evaluate its accuracy. We create prediction models using three models: the Neural Prophet technique, the Ensembled Neural Prophet model, and the GRU model. As a result of evaluating the performance of the model by comparing two major indicators, MAE and RMSE, the Ensembled Neural Prophet model predicted the most accurately, and the GRU model also showed similar performance to the ensemble model. The model developed in this study is published on the web and used in the field for 1 year and 6 months, and is used to predict melon production in the near future and to establish marketing and distribution strategies.

The Differential Impacts of Positive and Negative Emotions on Travel-Related YouTube Video Engagement (유튜브 여행 동영상의 긍정적 감정과 부정적 감정이 사용자 참여에 미치는 영향)

  • Heejin Kim;Hayeon Song;Jinyoung Yoo;Sungchul Choi
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.1-19
    • /
    • 2023
  • Despite the growing importance of video-based social media content, such as vlogs, as a marketing tool in the travel industry, there is limited research on the characteristics that enhance engagement among potential travelers. This study explores the influence of emotional valence in YouTube travel content on viewer engagement, specifically likes and comments. We analyzed 4,619 travel-related YouTube videos from eight popular tourist cities. Using negative binomial regression analysis, we found that both positive and negative emotions significantly influence the number of likes received. Videos with higher positive emotions as well as negative emotions receive more likes. However, when it comes to the number of comments, only negative emotions showed a significant positive influence, while positive emotions had no significant impact. These findings offer valuable insights for marketers seeking to optimize engagement strategies on YouTube, considering the unique nature of travel products. Further research into the effects of specific emotions on engagement is warranted to improve marketing strategies. This study highlights the powerful impact of emotions on viewer engagement in the context of social media, particularly on YouTube.

A Study on the Influence of Originality and Usefulness of Artificial Intelligence Music Products on Consumer Perceived Attractiveness and Purchase intention

  • Meilin, Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.45-52
    • /
    • 2020
  • In this paper, we propose an intention to study the purchase of smart music by Chinese consumers. To study the influence of the originality and usefulness of intelligent music products on the purchase intention of Chinese consumers, and to explore how the originality and usefulness of intelligent music products affect the purchase intention. To achieve this goal, 372 questionnaires were collected through the Internet for frequency analysis, factor analysis, confidence analysis and structural equation analysis of data collection, and were carried out by SPSSV22.0 and AMOSV22.0 methods. Research the validation of assumptions in the model to reveal the psychological and behavioral responses of consumers to smart music products. The results show that the originality and usefulness of new products not only directly affect the purchase intention of Chinese consumers, but also indirectly affect their purchase intention by enhancing their attractiveness. The conclusion of this study is of guiding significance for the development of intelligent music product development and marketing strategy.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

The Effect of Medical Service Design Thinking Teaching-learning on Empathic Problem Solving Ability: Convergence Analysis of Structured and Unstructured Data (의료서비스 디자인싱킹 교육의 공감적 문제해결능력 향상 효과: 정형 및 비정형 데이터 융복합 분석 중심으로)

  • Yoo, Jin-Yeong
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.311-321
    • /
    • 2020
  • The purpose of the study is to verify the effectiveness the Freshman Preliminary Health Administrators(FPHA)' Empathic Problem Solving Ability(EPSA) through the application of Medical Service Design Thinking(MSDT) conducted by undergraduate school of SNS hospital marketing education. The pre-post questionnaire survey was conducted on 39 students in the freshman year of the Department of Health Administration after applying MSDT for 15 weeks from September to December, 2019 at a college in Daegu. MSDT was positive influenced on the improvement of Empathic Imagine, Empathic interest, Empathic awakening of the FPHA' EPSA. In the analysis of key common words, the use of neutral and negative words was low, while the use of positive words was high. In order to systematically equip Empathic problem solving job competency in the age of artificial intelligence, it is meaningful to develop a program for the freshmen curriculum and to conduct a analysis of the structured and unstructured data to verify its effectiveness. Additional program development research is needed for the application of theoretical subjects.

An Analysis System Using Big Data based Real Time Monitoring of Vital Sign: Focused on Measuring Baseball Defense Ability (빅데이터 기반의 실시간 생체 신호 모니터링을 이용한 분석시스템: 야구 수비능력 측정을 중심으로)

  • Oh, Young-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.221-228
    • /
    • 2018
  • Big data is an important keyword in World's Fourth Industrial Revolution in public and private division including IoT(Internet of Things), AI(Artificial Intelligence) and Cloud system in the fields of science, technology, industry and society. Big data based on services are available in various fields such as transportation, weather, medical care, and marketing. In particular, in the field of sports, various types of bio-signals can be collected and managed by the appearance of a wearable device that can measure vital signs in training or rehabilitation for daily life rather than a hospital or a rehabilitation center. However, research on big data with vital signs from wearable devices for training and rehabilitation for baseball players have not yet been stimulated. Therefore, in this paper, we propose a system for baseball infield and outfield players, especially which can store and analyze the momentum measurement vital signals based on big data.

Identification of sentiment keywords association-based hotel network of hotel review using mapper method in topological data analysis (Topological Data Analysis 기법을 활용한 호텔 리뷰데이터의 감성 키워드 기반 호텔 관계망 구축)

  • Jeon, Ye-Seul;Kim, Jeong-Jae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • Hotel review data can extract various information that includes purchasing factors that lead to consumption, advantages, and disadvantages for hotels. In particular, the sentiment keyword of the review data helps consumers understand the pros and cons of hotels. However, it is not efficient for consumers to read a large number of reviews. Therefore, it is necessary to offer a summary review to customers. In this study, we suggest providing summary information on sentiment keywords association as well as a network of hotels based on sentiment keywords. Based on a sentiment keyword dictionary, the extracted sentiment keywords associations construct the hotel network through topological data analysis based mapper. This hotel network allows a consumer to find some hotels associated with specific sentiment keywords as well as recommends the same related hotels. This summary information provides users with a summarized emotional assessment of hotels and helps hotel marketing teams understand consumers' perceptions of their hotel.

Robot Development Trend and Prospect (신 성장동력의 로봇개발 동향과 전망)

  • Kim, Sung Woo
    • Convergence Security Journal
    • /
    • v.17 no.2
    • /
    • pp.153-158
    • /
    • 2017
  • The robot imitates humans and recognizes the external environment and judges the situation. The robot is a machine that operates autonomously. Robots are divided into manufacturing robots and service robots. Service robots are classified as professional service robots and personal service robots. Because of the intensified competition of productivity in manufacturing industries, rising safety issues, low birth rate and aging, the robots industry is emerging. Recently, the robot industry is a complex of advanced technology fields, and it is attracting attention as a new industry where innovation potential and growth potential are promising. IT, BT, and NT related elements are fused and implemented, and the ripple effect is very large. Due to changes in social structure and life patterns, social interest in life extension and health is increasing. There is much interest in the medical field. Now the artificial intelligence (AI) industry is growing rapidly. It is necessary to secure global competitiveness through strengthening cooperation between large and small companies. We must combine R&D investment capability and marketing capability, which are advantages of large corporations, and robotic technology. We need to establish a cooperative model and secure global competitiveness through M&A.

A Study on User-Library Relationship with the Library Curation Service (도서관 큐레이션 서비스를 통한 이용자-도서관 관계형성에 대한 연구)

  • Kwak, Woojung;Noh, Younghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.31 no.1
    • /
    • pp.137-162
    • /
    • 2020
  • As the core task was selected in the 3rd Comprehensive Library Advancement Plan, 'Reinforcement of programs and services to strengthen future citizens' capacity required in the Fourth Industrial Revolution', the customized curation service of the library using artificial intelligence technology has recently been in the spotlight. The purpose of this study is to find out how the customized curation service affects the relationship between the library and the user. As a result, the library curation service was proved to have a statistically significant effect on user satisfaction and reliability. Satisfaction and reliability were also found to have a positive effect on library revisit, word of mouth intention, increased use, and new service intention. The results of this study can be used as basic data for the development and the operation of customized curation services based on user demand surveys, and could further contribute to enhancing the status of public libraries in Korea by mproving the competitiveness of libraries in the future society.