• Title/Summary/Keyword: Artificial Inteligence(AI)

Search Result 7, Processing Time 0.022 seconds

A study on the factors influencing the data collection performance of smart buoys (스마트 항로표지의 데이터 수집 성능에 영향을 미치는 요인에 관한 연구)

  • Ho-Joon Kim;Min-Kyu Kim;Nam-Yong Lee;Chul-Soo Kim;Sangmun Shin;Se-woong Oh;Jin-Hong Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.60-62
    • /
    • 2021
  • 항로표지는 해상상황 정보를 수집하고 선박들의 항해에 안전을 도모하기 위해 설치 및 운용되고 있다. 관련해 개별 지방청에서 운영되는 데이터를 빅데이터 형태로 활용하고자 하는 경우 수집된 데이터의 품질에 대한 평가가 이루어져야 한다. 본 논문에서는 수집된 항로표지 데이터의 누락 정보를 중심으로 데이터 수집에 있어 장애 생성의 주된 원인을 찾고자 하였다. 수집된 데이터의 분석 결과 기상악화와 표지의 전압이 하락한 날에 데이터 결측 발생률이 톺음을 확인할 수 있었다. 이를 통해 기상 상황, 표지의 전압 상태 그리고 수집된 데이터 개수의 비교를 통해 기상악화가 영향을 미쳤을 수 있음을 확인하였다.

  • PDF

A Study on the Effect of Ocean Climate on the Reception Quality of Data of Aid to Navigation (해상기후가 항로표지 데이터 수신 품질에 미치는 영향 연구)

  • Min-Kyu Kim;Ho-Joon Kim;JinHong Yang;Nam-Yong Lee;Chul-Soo Kim;Jun-Hyuk Jang;Se-Woong Oh;Sang-Mun Shin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.68-71
    • /
    • 2022
  • 항로표지는 해상에 독립적으로 암초 위나 줄에 의해 떠 있는 형태로 존재하며, 선박들의 안전 운행에 필요한 다양한 정보를 제공하는 역할을 수행한다. 이러한 항로표지의 설치 및 동작 형태는 풍랑에 따라 기기의 위치가 가변적으로 변하게 된다. 따라서 기기의 위치가 급격하게 변했을 때, 항로표지 기기 내에도 영향을 받는다면 지방청의 항로표지 데이터 수신이 낮아질 것이라고 가설 설정했다. 본 논문에서는 기상특보에 따른 시간적 기준으로 구간을 나누어 풍랑과 항로표지 데이터 수신 간의 상관관계가 있는지 연구를 진행하였다. 연구 결과 풍랑이 거세질수록 평균 데이터 수집량이 감소하는 것으로 데이터 수신 강도의 영향을 줄 수 있음을 확인하였다. 이번 연구를 통해 풍랑에 대비한 항로표지 데이터의 개선이 필요하며, 선박의 안전과 관련된 만큼 정밀한 개선을 요한다.

  • PDF

A Study on Effective Interpretation of AI Model based on Reference (Reference 기반 AI 모델의 효과적인 해석에 관한 연구)

  • Hyun-woo Lee;Tae-hyun Han;Yeong-ji Park;Tae-jin Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.411-425
    • /
    • 2023
  • Today, AI (Artificial Intelligence) technology is widely used in various fields, performing classification and regression tasks according to the purpose of use, and research is also actively progressing. Especially in the field of security, unexpected threats need to be detected, and unsupervised learning-based anomaly detection techniques that can detect threats without adding known threat information to the model training process are promising methods. However, most of the preceding studies that provide interpretability for AI judgments are designed for supervised learning, so it is difficult to apply them to unsupervised learning models with fundamentally different learning methods. In addition, previously researched vision-centered AI mechanism interpretation studies are not suitable for application to the security field that is not expressed in images. Therefore, In this paper, we use a technique that provides interpretability for detected anomalies by searching for and comparing optimization references, which are the source of intrusion attacks. In this paper, based on reference, we propose additional logic to search for data closest to real data. Based on real data, it aims to provide a more intuitive interpretation of anomalies and to promote effective use of an anomaly detection model in the security field.

AI Platform Solution Service and Trends (글로벌 AI 플랫폼 솔루션 서비스와 발전 방향)

  • Lee, Kang-Yoon;Kim, Hye-rim;Kim, Jin-soo
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Global Platform Solution Company (aka Amazon, Google, MS, IBM) who has cloud platform, are driving AI and Big Data service on their cloud platform. It will dramatically change Enterprise business value chain and infrastructures in Supply Chain Management, Enterprise Resource Planning in Customer relationship Management. Enterprise are focusing the channel with customers and Business Partners and also changing their infrastructures to platform by integrating data. It will be Digital Transformation for decision support. AI and Deep learning technology are rapidly combined to their data driven platform, which supports mobile, social and big data. The collaboration of platform service with business partner and the customer will generate new ecosystem market and it will be the new way of enterprise revolution as a part of the 4th industrial revolution.

  • PDF

A Study on Efficient AI Model Drift Detection Methods for MLOps (MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구)

  • Ye-eun Lee;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology develops and its practicality increases, it is widely used in various application fields in real life. At this time, the AI model is basically learned based on various statistical properties of the learning data and then distributed to the system, but unexpected changes in the data in a rapidly changing data situation cause a decrease in the model's performance. In particular, as it becomes important to find drift signals of deployed models in order to respond to new and unknown attacks that are constantly created in the security field, the need for lifecycle management of the entire model is gradually emerging. In general, it can be detected through performance changes in the model's accuracy and error rate (loss), but there are limitations in the usage environment in that an actual label for the model prediction result is required, and the detection of the point where the actual drift occurs is uncertain. there is. This is because the model's error rate is greatly influenced by various external environmental factors, model selection and parameter settings, and new input data, so it is necessary to precisely determine when actual drift in the data occurs based only on the corresponding value. There are limits to this. Therefore, this paper proposes a method to detect when actual drift occurs through an Anomaly analysis technique based on XAI (eXplainable Artificial Intelligence). As a result of testing a classification model that detects DGA (Domain Generation Algorithm), anomaly scores were extracted through the SHAP(Shapley Additive exPlanations) Value of the data after distribution, and as a result, it was confirmed that efficient drift point detection was possible.

An Expert System for NC Part Programming (ESPP-1) (NC파트 프로그래밍을 위한 전문가시스템)

  • 정선환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3091-3097
    • /
    • 1994
  • An expert system for NC part programming of NC lathe (ESPP-1) is developed as a part of Computer-Adied Manufacturing system. Conventional computer-assisted part programming system essentially requires an NC part programmer who is an expert in NC part programming. But the developed ESSP-1 can allow an inexperienced person to make an excellent NC data for the NC Lathe without any problem, since the system has a knowledge base composed of EIA and ISO NC code, feed rate, spindle speed, machining coordinates selection, and tool selection etc., which were directly evoked from some skilled NC part programmers, and referenced some machining handbooks. This paper discusses the algorithm of the expert system for NC part programming of the NC lathe (ESPP-1) and the performance comparisons between the developed expert system and the conventional system.

Detects depression-related emotions in user input sentences (사용자 입력 문장에서 우울 관련 감정 탐지)

  • Oh, Jaedong;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1759-1768
    • /
    • 2022
  • This paper proposes a model to detect depression-related emotions in a user's speech using wellness dialogue scripts provided by AI Hub, topic-specific daily conversation datasets, and chatbot datasets published on Github. There are 18 emotions, including depression and lethargy, in depression-related emotions, and emotion classification tasks are performed using KoBERT and KOELECTRA models that show high performance in language models. For model-specific performance comparisons, we build diverse datasets and compare classification results while adjusting batch sizes and learning rates for models that perform well. Furthermore, a person performs a multi-classification task by selecting all labels whose output values are higher than a specific threshold as the correct answer, in order to reflect feeling multiple emotions at the same time. The model with the best performance derived through this process is called the Depression model, and the model is then used to classify depression-related emotions for user utterances.