항로표지는 해상상황 정보를 수집하고 선박들의 항해에 안전을 도모하기 위해 설치 및 운용되고 있다. 관련해 개별 지방청에서 운영되는 데이터를 빅데이터 형태로 활용하고자 하는 경우 수집된 데이터의 품질에 대한 평가가 이루어져야 한다. 본 논문에서는 수집된 항로표지 데이터의 누락 정보를 중심으로 데이터 수집에 있어 장애 생성의 주된 원인을 찾고자 하였다. 수집된 데이터의 분석 결과 기상악화와 표지의 전압이 하락한 날에 데이터 결측 발생률이 톺음을 확인할 수 있었다. 이를 통해 기상 상황, 표지의 전압 상태 그리고 수집된 데이터 개수의 비교를 통해 기상악화가 영향을 미쳤을 수 있음을 확인하였다.
항로표지는 해상에 독립적으로 암초 위나 줄에 의해 떠 있는 형태로 존재하며, 선박들의 안전 운행에 필요한 다양한 정보를 제공하는 역할을 수행한다. 이러한 항로표지의 설치 및 동작 형태는 풍랑에 따라 기기의 위치가 가변적으로 변하게 된다. 따라서 기기의 위치가 급격하게 변했을 때, 항로표지 기기 내에도 영향을 받는다면 지방청의 항로표지 데이터 수신이 낮아질 것이라고 가설 설정했다. 본 논문에서는 기상특보에 따른 시간적 기준으로 구간을 나누어 풍랑과 항로표지 데이터 수신 간의 상관관계가 있는지 연구를 진행하였다. 연구 결과 풍랑이 거세질수록 평균 데이터 수집량이 감소하는 것으로 데이터 수신 강도의 영향을 줄 수 있음을 확인하였다. 이번 연구를 통해 풍랑에 대비한 항로표지 데이터의 개선이 필요하며, 선박의 안전과 관련된 만큼 정밀한 개선을 요한다.
오늘날 AI(Artificial Intelligence) 기술은 다양한 분야에서 활용 목적에 맞게 분류, 회기 작업을 수행하며 광범위하게 활용되고 있으며, 연구 또한 활발하게 진행 중인 분야이다. 특히 보안 분야에서는 예기치 않는 위협을 탐지해야 하며, 모델 훈련과정에 알려진 위협 정보를 추가하지 않아도 위협을 탐지할 수 있는 비 지도학습 기반의 이상 탐지 기법이 유망한 방법이다. 하지만 AI 판단에 대한 해석 가능성을 제공하는 선행 연구 대부분은 지도학습을 대상으로 설계되었기에 학습 방법이 근본적으로 다른 비 지도학습 모델에 적용하기는 어려우며, Vision 중심의 AI 매커니즘 해석연구들은 이미지로 표현되지 않는 보안 분야에 적용하기에 적합하지 않다. 따라서 본 논문에서는 침해공격의 원본인 최적화 Reference를 탐색하고 이와 비교함으로써 탐지된 이상에 대한 해석 가능성을 제공하는 기법을 활용한다. 본 논문에서는 산출된 Reference를 기반으로 실존 데이터에서 가장 가까운 데이터를 탐색하는 로직을 추가 제안함으로써 실존 데이터를 기반으로 이상 징후에 대한 더욱 직관적인 해석을 제공하고 보안 분야에서의 효과적인 이상 탐지모델 활용을 도모하고자 한다.
클라우드 서비스에 기반한 글로벌 플랫폼 솔루션 기업은 인공지능과 빅데이터 서비스를 킬러앱으로 발전시키며 기업의 산업 솔루션을 제공하며 이것은 기업의 비즈니스 밸류 체인에 큰 변화를 가져오게 할 것이다. 제조 생산의 최적화에서 디자인과 마케팅, 유통 등이 중요해 지고 SCM와 고객 데이터가 수평적으로 연결되어 관리가 필요해지면서 기업의 모든 데이터도 하나의 플랫폼을 중심으로 데이터에 기반한 통합을 이루어 기업 의사 결정 모델을 구현하는 방향으로 발전하게 된다. 이러한 변화는 기업의 소셜, 모발 솔루션과 통합되는 디지털 혁신을 리드하고 있다. 또한 기업은 다른 기술 경쟁력을 가진 기업의 기술, 플랫폼 솔루션과 Ecosystem 비즈니스 파트너로 융합하여 새로운 비즈니스 모델을 만들고 산업과 지역의 경계를 넘어 새로운 에코시스템 마켓플레이스를 만들고 있다.
오늘날 AI(Artificial Intelligence) 기술이 발전하면서 실용성이 증가함에 따라 실생활 속 다양한 응용 분야에서 널리 활용되고 있다. 이때 AI Model은 기본적으로 학습 데이터의 다양한 통계적 속성을 기반으로 학습된 후 시스템에 배포되지만, 급변하는 데이터의 상황 속 예상치 못한 데이터의 변화는 모델의 성능저하를 유발한다. 특히 보안 분야에서 끊임없이 생성되는 새로운 공격과 알려지지 않은 공격에 대응하기 위해서는 배포된 모델의 Drift Signal을 찾는 것이 중요해짐에 따라 모델 전체의 Lifecycle 관리 필요성이 점차 대두되고 있다. 일반적으로 모델의 정확도 및 오류율(Loss)의 성능변화를 통해 탐지할 수 있지만, 모델 예측 결과에 대한 실제 라벨이 필요한 점에서 사용 환경의 제약이 존재하며, 실제 드리프트가 발생한 지점의 탐지가 불확실한 단점이 있다. 그 이유는 모델의 오류율의 경우 다양한 외부 환경적 요인, 모델의 선택과 그에 따른 파라미터 설정, 그리고 새로운 입력데이터에 따라 크게 영향을 받기에 해당 값만을 기반으로 데이터의 실질적인 드리프트 발생 시점을 정밀하게 판단하는 것은 한계가 존재하게 된다. 따라서 본 논문에서는 XAI(eXplainable Artificial Intelligence) 기반 Anomaly 분석기법을 통해 실질적인 드리프트가 발생한 시점을 탐지하는 방안을 제안한다. DGA(Domain Generation Algorithm)를 탐지하는 분류모델을 대상으로 시험한 결과, 배포된 이후 데이터의 SHAP(Shapley Additive exPlanations) Value를 통해 Anomaly score를 추출하였고, 그 결과 효율적인 드리프트 시점탐지가 가능함을 확인하였다.
An expert system for NC part programming of NC lathe (ESPP-1) is developed as a part of Computer-Adied Manufacturing system. Conventional computer-assisted part programming system essentially requires an NC part programmer who is an expert in NC part programming. But the developed ESSP-1 can allow an inexperienced person to make an excellent NC data for the NC Lathe without any problem, since the system has a knowledge base composed of EIA and ISO NC code, feed rate, spindle speed, machining coordinates selection, and tool selection etc., which were directly evoked from some skilled NC part programmers, and referenced some machining handbooks. This paper discusses the algorithm of the expert system for NC part programming of the NC lathe (ESPP-1) and the performance comparisons between the developed expert system and the conventional system.
본 논문은 AI Hub에서 제공하는 웰니스 대화 스크립트, 주제별 일상 대화 데이터세트와 Github에 공개된 챗봇 데이터세트를 활용하여 사용자의 발화에서 우울 관련 감정을 탐지하는 모델을 제안한다. 우울 관련 감정에는 우울감, 무기력을 비롯한 18가지 감정이 존재하며, 언어 모델에서 높은 성능을 보이는 KoBERT와 KoELECTRA 모델을 사용하여 감정 분류 작업을 수행한다. 모델별 성능 비교를 위해 우리는 데이터세트를 다양하게 구축하고, 좋은 성능을 보이는 모델에 대해 배치 크기와 학습률을 조정하면서 분류 결과를 비교한다. 더 나아가, 사람은 동시에 여러 감정을 느끼는 것을 반영하기 위해, 모델의 출력값이 특정 임계치보다 높은 레이블들을 모두 정답으로 선정함으로써, 다중 분류 작업을 수행한다. 이러한 과정을 통해 도출한 성능이 가장 좋은 모델을 Depression model이라 부르며, 이후 사용자 발화에 대해 우울 관련 감정을 분류할 때 해당 모델을 사용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.