• 제목/요약/키워드: Artificial Immune Network

검색결과 52건 처리시간 0.025초

Intelligent Tuning of a PID Controller Using Immune Algorithm

  • Kim, Dong-Hwa;Kaoru Hirota
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.91.5-91
    • /
    • 2001
  • This paper suggests that the immune algorithm can effectively be used in tuning of a PID controller. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes accord Eng to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach have been used to describe dynamic model relationship between antibody and antigen. Therefore, there are some problems ...

  • PDF

Adaptive Distributed Autonomous Robotic System based on Artificial Immune Network and Classifier System

  • Hwang, Chul-Min;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1286-1290
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System (DARS) based on an Artificial Immune Network (AIN) and a Classifier System (CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIN decides one between these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The relation between global and local increases the performance of system. Also, the proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

  • PDF

인공 면역계 기반 자율분산로봇 시스템의 협조 전략과 군행동 (Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems Based on Artificial Immune System)

  • 심귀보;이동욱;선상준
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1079-1085
    • /
    • 2000
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

중앙 집중형 망에서 인공면역체계 기반의 적응적 망 이상 상태 탐지 모델 설계 (An Adaptive Anomaly Detection Model Design based on Artificial Immune System in Central Network)

  • 유경민;양원혁;이상열;정혜련;소원호;김영천
    • 한국통신학회논문지
    • /
    • 제34권3B호
    • /
    • pp.311-317
    • /
    • 2009
  • 기존의 망 이상 상태 탐지 시스템들은 주로 정상 상태의 시스템 사용률 등과 같은 통계 값으로 결정된 임계값을 기반으로 탐지하기 때문에 이상 상태임에도 불구하고 정상 상태와 비슷한 시스템 통계 값을 가지면 탐지하지 못하는 문제점이 있다. 이러한 단점들을 해결하기 위하여 본 논문에서는 인간면역체계의 학습, 적응, 기억 능력등의 특성을 이용하는 인공면역체계 기반의 적응적 망 이상 상태 탐지 모델을 제안한다. 이를 위하여 인간면역 시스템의 수지상 세포 (Dendritic Cell)와 T 세포 사이의 상호 작용을 이용한 탐지 모델을 설계하고 각 구성 요소 및 기능을 정의한다. 중앙 집중 제어 노드는 각 라우터 노드로부터 전달받은 정보를 분석하여 대응 방법을 해당 라우터들에게 전달한다. 또한 라우터 노드는 학습을 통해 얻어진 데이터를 기반으로 이상 상태를 탐지할 뿐만 아니라 중앙 집중 제어 노드로부터 전달받은 정보를 이용하여 이상 상태를 처리한다. 최종적으로 제안된 이상 상태탐지 모델의 타당성을 검증하기 위하여 구성 모듈을 설계하고 flooding 공격에 대한 시뮬레이션을 수행한다.

A Navigation Algorithm for Autonomous Mobile Robots Using Artificial Immune Networks and Neural Networks

  • Kim, Insic;Lee, Minjung;Park, Youngkiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.106.5-106
    • /
    • 2002
  • 1. Introduction 2. Artificial Immune Networks and Navigation Algorithm 3. Obstacle Avoidance and Goal Approach Behavior 4. Weights Adjustment Using Neural Network 5. Velocity Control and Local Minimum Avoidance 6. Simulation 7. Conclusion

  • PDF

퍼지 인공 면역망 시스템을 이용한 자율이동로봇 시스템 (Autonomous Mobile Robot System based on a Fuzzy Artificial Immune System)

  • 이동제;최영규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.257-260
    • /
    • 2007
  • 본 논문은 초음파 센서에 의해 인식된 정보를 항체와 항원으로 모델링 된 퍼지 인공 명역망에 의한 하위 행위기와 상위 행동 선택기로 설계된 자율이동로봇 시스템에 관한 연구이다. 외부 환경과 행동 패턴의 관계는 매우 많은 조합이 가능하다. 이러한 복잡한 관계 속에서 행동의 우선 순위를 어떻게 결정하는가 하는 문제가 가장 중요하다. 이러 복잡한 결정을 위해 본 논문에서는 퍼지 인공 면역망 알고리즘을 제시하고, 컴퓨터 시뮬레이션에 의해 제안된 자율이동로봇의 행위 선택기의 유용성을 보여준다.

  • PDF

퍼지 인공 면역망 시스템을 이용한 자율이동로봇 시스템 (Autonomous Mobile Robot System based on a Fuzzy Artificial Immune System)

  • 이동제;최영규
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2083-2089
    • /
    • 2007
  • 본 논문은 초음파 센서에 의해 인식된 정보를 항체와 항원으로 모델링 된 퍼지 인공 명역망에 의한 하위 행위기와 상위 행동 선택기로 설계된 자율이동로봇 시스템에 관한 연구이다. 외부 환경과 행동 패턴의 관계는 매우 많은 조합이 가능하다. 이러한 복잡한 관계 속에서 행동의 우선 순위를 어떻게 결정하는가 하는 문제가 가장 중요하다. 이런 복잡한 결정을 위해 본 논문에서는 퍼지 인공 면역망 알고리즘을 제시하고, 컴퓨터 시뮬레이션에 의해 제안된 자율이동로봇의 행위 선택기의 유용성을 보여준다.

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

퍼지-인공면역망과 RBFN에 의한 자율이동로봇 제어 (An Autonomous Mobile Robot Control Method based on Fuzzy-Artificial Immune Networks and RBFN)

  • 오홍민;박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권12호
    • /
    • pp.679-688
    • /
    • 2003
  • In order to navigate the mobile robots safely in unknown environments, many researches have been studied to devise navigational algorithms for the mobile robots. In this paper, we propose a navigational algorithm that consists of an obstacle-avoidance behavior module, a goal-approach behavior module and a radial basis function network(RBFN) supervisor. In the obstacle-avoidance behavior module and goal-approach behavior module, the fuzzy-artificial immune networks are used to select a proper steering angle which makes the autonomous mobile robot(AMR) avoid obstacles and approach the given goal. The RBFN supervisor is employed to combine the obstacle-avoidance behavior and goal-approach behavior for reliable and smooth motion. The outputs of the RBFN are proper combinational weights for the behavior modules and velocity to steer the AMR appropriately. Some simulations and experiments have been conducted to confirm the validity of the proposed navigational algorithm.

An Application of Clonal Selection Process of an Artificial Immune System to Implementing Intruder Detection System

  • Kim, Jung-Won;Kim, Jung-Won;Kim, Hwa-Soo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.298-309
    • /
    • 2001
  • This research aims to unravel the significant features of the human immune system, which would be successfully employed for a novel network intrusion detection model. Several salient features of the human immune system, which detects intruding pathogens, are carefully studied and the possibility and the advantages of adopting these features for network intrusion detection are reviewed and assessed.

  • PDF