Purpose: With the popularity of artificial intelligence (AI) in the service industry and occurrence ofservice failures in AI-based services, understanding human-robot interaction issues in service failure situations is especially important. Some issues which deserve further empirical investigation are whether consumers can develop the same tolerance for chatbots after service failure as they have for human agents, and the relationship between agent type and tolerance is mediated by the mechanisms of perceived warmth and perceived competence. Research Design, Data, and Methodology: This research experimentally collected and analyzed data from 119 university students who had experienced chatbots service failures. Differences in tolerance towards human agents and chatbots after experiencing service failures were explored, with a further examination of the mediating pathways between this relationship via perceived warmth and perceived competence. Results: Consumers are more tolerant ofservice failure with chatbots compared to service failure with human agents. Significant mediation of the relationship between service agent and service failure tolerance by perceived competence, while perceived warmth has no significant mediating effect. Conclusions: This research enhances our understanding of AI-assisted services, human-computer interaction, improves the service functionality of existing smart devices, and deepens the understanding of the relationship between consumer responses and behaviors.
The existing model for sentiment analysis of product reviews learned from past data and new data was labeled based on training. But new data was never used by the existing system for making a decision. The proposed Aspect-based multi-agent Deep Reinforcement learning Sentiment Analysis (ADRSA) model learned from its very first data without the help of any training dataset and labeled a sentence with aspect category and sentiment polarity. It keeps on learning from the new data and updates its knowledge for improving its intelligence. The decision of the proposed system changed over time based on the new data. So, the accuracy of the sentiment analysis using deep reinforcement learning was improved over supervised learning and unsupervised learning methods. Hence, the sentiments of premium customers on a particular site can be explored to other customers effectively. A dynamic environment with a strong knowledge base can help the system to remember the sentences and usage State Action Reward State Action (SARSA) algorithm with Bidirectional Encoder Representations from Transformers (BERT) model improved the performance of the proposed system in terms of accuracy when compared to the state of art methods.
Rahat HUSSAIN;Aqsa SABIR;Muahmmad Sibtain ABBAS;Nasrullah KHAN;Syed Farhan Alam ZAIDI;Chansik PARK;Doyeop LEE
International conference on construction engineering and project management
/
2024.07a
/
pp.1230-1237
/
2024
Personalized learning is a critical factor in optimizing performance on construction sites. Traditional pedagogical methods often adhere to a one-size-fits-all approach, failing to provide the nuanced adaptation required to cater to diverse knowledge needs, roles, and learning preferences. While advancements in technology have led to improvements in personalized learning within construction education, the crucial connection between instructors' roles and training enviornment to personalized learning success remains largely unexplored. To address these gaps, this research proposes a novel learning approach utilizing multi-agent, context-specific AI agents within construction virtual environments. This study aims to pioneer an innovative approach leveraging the Large Language Model's capabilities with prompt engineering to make domain-specific conversations. Through the integration of AI-driven conversations in a realistic 3D environment, users will interact with domain-specific agents, receiving personalized safety guidance and information. The system's performance is assessed using the five evaluation criteria including learnability, interaction, communication, relevancy and visualization. The results revealed that the proposed approach has the potential to significantly enhance safety learning in the construction industry, which may lead to improve practices and reduction in accidents on diverse construction sites.
Predicting stealthy behaviors plays an important role in designing stealth games. It is, however, difficult to automate this task because human players interact with dynamic environments in real time. In this paper, we present a reinforcement learning (RL) method for simulating stealthy movements in dynamic environments, in which an integrated model of Q-learning with Artificial Neural Networks (ANN) is exploited as an action classifier. Experiment results show that our simulation agent responds sensitively to dynamic situations and thus is useful for game level designer to determine various parameters for game.
Magnaporthe grisea, the casual agent of rice blast, requires formation of an appressorium, a dome-shaped and well melanized infection structure, to penetrate its host. Environmental cues that induce appressorium formation include hydrophobicity and hardness of contact surface and chemicals from its host. Artificial surfaces are widely used to induce appressorium formation, but frequencies of appressorium induction are not always consistent. To understand variable induction of appressorium formation in M. grisea, several factors were tested on GelBond. High levels of appressorium formation were induced over a wide range of temperature (20~3$0^{\circ}C$) and pH (4~7). spore age up to 3-week-old did not significantly affect appressorium formation, but only a few apressoria on GelBond. However, adenosine specifically inhibited appressorium formation. Adenosine inhibition of appressorium formation was restored by exogenous addition of cAMP. Germ tube tips of M. grisea maintained the ability to differentiate appressoria by chemical inducers on GelBond at least up to 16 h after conidia germination. These results suggest that environmental factors have little effect on the variable induction of appressorium formation on the artificial surface in M. grisea.
Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).
Journal of Korean Association for Spatial Structures
/
v.23
no.3
/
pp.87-94
/
2023
Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.
Younghee Park;Soohyung Park;Jeongsik Kim;Byoung-jik Kim;Namhun Kim
Nuclear Engineering and Technology
/
v.55
no.6
/
pp.2246-2255
/
2023
Evacuation time estimation (ETE) is crucial for the effective implementation of resident protection measures as well as planning, owing to its applicability to nuclear emergencies. However, as confirmed in the Fukushima case, the ETE performed by nuclear operators does not reflect behavioral features, exposing thus, gaps that are likely to appear in real-world situations. Existing research methods including surveys and interviews have limitations in extracting highly feasible behavioral features. To overcome these limitations, we propose a VR-based immersive experiment system. The VR system realistically simulates nuclear emergencies by structuring existing disasters and human decision processes in response to the disasters. Evacuation behavioral features were quantitatively extracted through the proposed experiment system, and this system was systematically verified by statistical analysis and a comparative study of experimental results based on previous research. In addition, as part of future work, an application method that can simulate multi-level evacuation dynamics was proposed. The proposed experiment system is significant in presenting an innovative methodology for quantitatively extracting human behavioral features that have not been comprehensively studied in evacuation. It is expected that more realistic evacuation behavioral features can be collected through additional experiments and studies of various evacuation factors in the future.
Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in cereal crops, employs the production of sexual fruiting bodies (perithecia) on plant debris as a strategy for overwintering and dissemination. In an artificial condition (e.g., carrot agar medium), the F. graminearum Z3643 strain was capable of producing perithecia predominantly in the central region of the fungal culture where aerial hyphae naturally collapsed. To unravel the intricate relationship between natural aerial hyphae collapse and sexual development in this fungus, we focused on 699 genes differentially expressed during aerial hyphae collapse, with 26 selected for further analysis. Targeted gene deletion and quantitative real-time PCR analyses elucidated the functions of specific genes during natural aerial hyphae collapse and perithecium formation. Furthermore, comparative gene expression analyses between natural collapse and artificial removal conditions reveal distinct temporal profiles, with the latter inducing a more rapid and pronounced response, particularly in MAT gene expression. Notably, FGSG_09210 and FGSG_09896 play crucial roles in sexual development and aerial hyphae growth, respectively. Taken together, it is plausible that if aerial hyphae collapse occurs on plant debris, it may serve as a physical cue for inducing perithecium formation in crop fields, representing a survival strategy for F. graminearum during winter. Insights into the molecular mechanisms underlying aerial hyphae collapse provides offer potential strategies for disease control against FHB caused by F. graminearum.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.2
/
pp.750-762
/
2019
The importance of the call center as a contact point for the enterprise is growing. However, call centers have difficulty with their operating agents due to the agents' lack of knowledge and owing to frequent agent turnover due to downturns in the business, which causes deterioration in the quality of customer service. Therefore, through an N-bank call center case study, we developed a system to reduce the burden of keeping up business knowledge and to improve customer service quality. It is a "real-time agent advisor" system that provides agents with answers to customer questions in real time by combining AI technology for speech recognition, natural language processing, and questions & answers for existing call center information systems, such as a private branch exchange (PBX) and computer telephony integration (CTI). As a result of the case study, we confirmed that the speech recognition system for real-time call analysis and the corpus construction method improves the natural speech processing performance of the query response system. Especially with name entity recognition (NER), the accuracy of the corpus learning improved by 31%. Also, after applying the agent advisor system, the positive feedback rate of agents about the answers from the agent advisor was 93.1%, which proved the system is helpful to the agents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.