• 제목/요약/키워드: Artificial Agent

Search Result 319, Processing Time 0.023 seconds

Consumers' Tolerance When Confronted with Different Service Types in Service Retailing

  • Chengcheng YU;Na CAI;Jinzhe YAN;Yening ZHOU
    • Journal of Distribution Science
    • /
    • v.22 no.2
    • /
    • pp.103-113
    • /
    • 2024
  • Purpose: With the popularity of artificial intelligence (AI) in the service industry and occurrence ofservice failures in AI-based services, understanding human-robot interaction issues in service failure situations is especially important. Some issues which deserve further empirical investigation are whether consumers can develop the same tolerance for chatbots after service failure as they have for human agents, and the relationship between agent type and tolerance is mediated by the mechanisms of perceived warmth and perceived competence. Research Design, Data, and Methodology: This research experimentally collected and analyzed data from 119 university students who had experienced chatbots service failures. Differences in tolerance towards human agents and chatbots after experiencing service failures were explored, with a further examination of the mediating pathways between this relationship via perceived warmth and perceived competence. Results: Consumers are more tolerant ofservice failure with chatbots compared to service failure with human agents. Significant mediation of the relationship between service agent and service failure tolerance by perceived competence, while perceived warmth has no significant mediating effect. Conclusions: This research enhances our understanding of AI-assisted services, human-computer interaction, improves the service functionality of existing smart devices, and deepens the understanding of the relationship between consumer responses and behaviors.

Aspect-based Sentiment Analysis of Product Reviews using Multi-agent Deep Reinforcement Learning

  • M. Sivakumar;Srinivasulu Reddy Uyyala
    • Asia pacific journal of information systems
    • /
    • v.32 no.2
    • /
    • pp.226-248
    • /
    • 2022
  • The existing model for sentiment analysis of product reviews learned from past data and new data was labeled based on training. But new data was never used by the existing system for making a decision. The proposed Aspect-based multi-agent Deep Reinforcement learning Sentiment Analysis (ADRSA) model learned from its very first data without the help of any training dataset and labeled a sentence with aspect category and sentiment polarity. It keeps on learning from the new data and updates its knowledge for improving its intelligence. The decision of the proposed system changed over time based on the new data. So, the accuracy of the sentiment analysis using deep reinforcement learning was improved over supervised learning and unsupervised learning methods. Hence, the sentiments of premium customers on a particular site can be explored to other customers effectively. A dynamic environment with a strong knowledge base can help the system to remember the sentences and usage State Action Reward State Action (SARSA) algorithm with Bidirectional Encoder Representations from Transformers (BERT) model improved the performance of the proposed system in terms of accuracy when compared to the state of art methods.

Multi-agent Conversational AI System for Personalized Learning of Construction Knowledge.

  • Rahat HUSSAIN;Aqsa SABIR;Muahmmad Sibtain ABBAS;Nasrullah KHAN;Syed Farhan Alam ZAIDI;Chansik PARK;Doyeop LEE
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1230-1237
    • /
    • 2024
  • Personalized learning is a critical factor in optimizing performance on construction sites. Traditional pedagogical methods often adhere to a one-size-fits-all approach, failing to provide the nuanced adaptation required to cater to diverse knowledge needs, roles, and learning preferences. While advancements in technology have led to improvements in personalized learning within construction education, the crucial connection between instructors' roles and training enviornment to personalized learning success remains largely unexplored. To address these gaps, this research proposes a novel learning approach utilizing multi-agent, context-specific AI agents within construction virtual environments. This study aims to pioneer an innovative approach leveraging the Large Language Model's capabilities with prompt engineering to make domain-specific conversations. Through the integration of AI-driven conversations in a realistic 3D environment, users will interact with domain-specific agents, receiving personalized safety guidance and information. The system's performance is assessed using the five evaluation criteria including learnability, interaction, communication, relevancy and visualization. The results revealed that the proposed approach has the potential to significantly enhance safety learning in the construction industry, which may lead to improve practices and reduction in accidents on diverse construction sites.

Stealthy Behavior Simulations Based on Cognitive Data (인지 데이터 기반의 스텔스 행동 시뮬레이션)

  • Choi, Taeyeong;Na, Hyeon-Suk
    • Journal of Korea Game Society
    • /
    • v.16 no.2
    • /
    • pp.27-40
    • /
    • 2016
  • Predicting stealthy behaviors plays an important role in designing stealth games. It is, however, difficult to automate this task because human players interact with dynamic environments in real time. In this paper, we present a reinforcement learning (RL) method for simulating stealthy movements in dynamic environments, in which an integrated model of Q-learning with Artificial Neural Networks (ANN) is exploited as an action classifier. Experiment results show that our simulation agent responds sensitively to dynamic situations and thus is useful for game level designer to determine various parameters for game.

Factors Affecting Appressorium Formation in the Rice Blast Fungus Magnaporthe grisea (벼 도열병균의 부차기 형성에 미치는 요인 분석)

  • 이승철;강신호;이용환
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.413-417
    • /
    • 1998
  • Magnaporthe grisea, the casual agent of rice blast, requires formation of an appressorium, a dome-shaped and well melanized infection structure, to penetrate its host. Environmental cues that induce appressorium formation include hydrophobicity and hardness of contact surface and chemicals from its host. Artificial surfaces are widely used to induce appressorium formation, but frequencies of appressorium induction are not always consistent. To understand variable induction of appressorium formation in M. grisea, several factors were tested on GelBond. High levels of appressorium formation were induced over a wide range of temperature (20~3$0^{\circ}C$) and pH (4~7). spore age up to 3-week-old did not significantly affect appressorium formation, but only a few apressoria on GelBond. However, adenosine specifically inhibited appressorium formation. Adenosine inhibition of appressorium formation was restored by exogenous addition of cAMP. Germ tube tips of M. grisea maintained the ability to differentiate appressoria by chemical inducers on GelBond at least up to 16 h after conidia germination. These results suggest that environmental factors have little effect on the variable induction of appressorium formation on the artificial surface in M. grisea.

  • PDF

Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System (지적보전시스템의 실시간 다중고장진단 기법 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

Development of human-in-the-loop experiment system to extract evacuation behavioral features: A case of evacuees in nuclear emergencies

  • Younghee Park;Soohyung Park;Jeongsik Kim;Byoung-jik Kim;Namhun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2246-2255
    • /
    • 2023
  • Evacuation time estimation (ETE) is crucial for the effective implementation of resident protection measures as well as planning, owing to its applicability to nuclear emergencies. However, as confirmed in the Fukushima case, the ETE performed by nuclear operators does not reflect behavioral features, exposing thus, gaps that are likely to appear in real-world situations. Existing research methods including surveys and interviews have limitations in extracting highly feasible behavioral features. To overcome these limitations, we propose a VR-based immersive experiment system. The VR system realistically simulates nuclear emergencies by structuring existing disasters and human decision processes in response to the disasters. Evacuation behavioral features were quantitatively extracted through the proposed experiment system, and this system was systematically verified by statistical analysis and a comparative study of experimental results based on previous research. In addition, as part of future work, an application method that can simulate multi-level evacuation dynamics was proposed. The proposed experiment system is significant in presenting an innovative methodology for quantitatively extracting human behavioral features that have not been comprehensively studied in evacuation. It is expected that more realistic evacuation behavioral features can be collected through additional experiments and studies of various evacuation factors in the future.

Functional Analysis of Genes Specifically Expressed during Aerial Hyphae Collapse as a Potential Signal for Perithecium Formation Induction in Fusarium graminearum

  • Yun-Seon Choi;Da-Woon Kim;Sung-Hwan Yun
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.83-97
    • /
    • 2024
  • Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in cereal crops, employs the production of sexual fruiting bodies (perithecia) on plant debris as a strategy for overwintering and dissemination. In an artificial condition (e.g., carrot agar medium), the F. graminearum Z3643 strain was capable of producing perithecia predominantly in the central region of the fungal culture where aerial hyphae naturally collapsed. To unravel the intricate relationship between natural aerial hyphae collapse and sexual development in this fungus, we focused on 699 genes differentially expressed during aerial hyphae collapse, with 26 selected for further analysis. Targeted gene deletion and quantitative real-time PCR analyses elucidated the functions of specific genes during natural aerial hyphae collapse and perithecium formation. Furthermore, comparative gene expression analyses between natural collapse and artificial removal conditions reveal distinct temporal profiles, with the latter inducing a more rapid and pronounced response, particularly in MAT gene expression. Notably, FGSG_09210 and FGSG_09896 play crucial roles in sexual development and aerial hyphae growth, respectively. Taken together, it is plausible that if aerial hyphae collapse occurs on plant debris, it may serve as a physical cue for inducing perithecium formation in crop fields, representing a survival strategy for F. graminearum during winter. Insights into the molecular mechanisms underlying aerial hyphae collapse provides offer potential strategies for disease control against FHB caused by F. graminearum.

Development of AI-based Real Time Agent Advisor System on Call Center - Focused on N Bank Call Center (AI기반 콜센터 실시간 상담 도우미 시스템 개발 - N은행 콜센터 사례를 중심으로)

  • Ryu, Ki-Dong;Park, Jong-Pil;Kim, Young-min;Lee, Dong-Hoon;Kim, Woo-Je
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.750-762
    • /
    • 2019
  • The importance of the call center as a contact point for the enterprise is growing. However, call centers have difficulty with their operating agents due to the agents' lack of knowledge and owing to frequent agent turnover due to downturns in the business, which causes deterioration in the quality of customer service. Therefore, through an N-bank call center case study, we developed a system to reduce the burden of keeping up business knowledge and to improve customer service quality. It is a "real-time agent advisor" system that provides agents with answers to customer questions in real time by combining AI technology for speech recognition, natural language processing, and questions & answers for existing call center information systems, such as a private branch exchange (PBX) and computer telephony integration (CTI). As a result of the case study, we confirmed that the speech recognition system for real-time call analysis and the corpus construction method improves the natural speech processing performance of the query response system. Especially with name entity recognition (NER), the accuracy of the corpus learning improved by 31%. Also, after applying the agent advisor system, the positive feedback rate of agents about the answers from the agent advisor was 93.1%, which proved the system is helpful to the agents.