• 제목/요약/키워드: Artifact Reduction

검색결과 161건 처리시간 0.022초

Reduction of Metal Artifact by Using VAT-SEMAC in MRI (VAT-SEMAC을 이용한 보철물에 의한 허상 감소)

  • Kim, Hyung-Tae;Lim, Jong-Nam;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • 제13권2호
    • /
    • pp.227-232
    • /
    • 2019
  • MRI examination for patients with metal objects has in poor image quality. Metallic implants can result in poor image because magnetic susceptibility causes signal loss and distortion and makes poor imaging, which is called magnetic susceptibility artifact or metal artifact. There are several approaches to reduce metal artifacts. In this study, we study the reduction of metal artifact by VAT and SEMAC techniques. A metal implant used for orthopedic surgery was attached to the phatom and the distortion caused by the artifact was measured under T1WI and T2WI protocols. Several techniques of VAT only and VAT and SEMAC for the reduction of metal artifact were compared. The metal artifact showed a reduction of at least 8% to a maximum of 26% in the VAT-SEMAC. The VAT-SEMAC technique can be applied to patients with orthopedic implants to improve image quality. If scan time and image quality are simultaneously considered in VAT-SEMAC technique, metal artifact will be reduced in clinical practice.

A Quantizer Reconstruction Level Control Method for Block Artifact Reduction in DCT Image Coding (양자화 재생레벨 조정을 통한 DCT 영상 코오딩에서의 블록화 현상 감소 방법)

  • 김종훈;황찬식;심영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • 제28B권5호
    • /
    • pp.318-326
    • /
    • 1991
  • A Quantizer reconstruction level control method for block artifact reduction in DCT image coding is described. In our scheme, quantizer reconstruction level control is obtained by adding quantization level step size to the optimum quantization level in the direction of reducing the block artifact by minimizing the mean square error(MSE) and error difference(EDF) distribution in boundary without the other additional bits. In simulation results, although the performance in terms of signal to noise ratio is degraded by a little amount, mean square of error difference at block boundary and mean square error having relation block artifact is greatly reduced. Subjective image qualities are improved compared with other block artifact reduction method such as postprocessing by filtering and trasform coding by block overlapping. But the addition calculations of 1-dimensional DCT become to be more necessary to coding process for determining the reconstruction level.

  • PDF

Metal artifact production and reduction in CBCT with different numbers of basis images

  • Queiroz, Polyane Mazucatto;Santaella, Gustavo Machado;Groppo, Francisco Carlos;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • 제48권1호
    • /
    • pp.41-44
    • /
    • 2018
  • Purpose: To evaluate the effect of different numbers of basis images and the use of metal artifact reduction (MAR) on the production and reduction of artifacts in cone-beam computed tomography images. Materials and Methods: An acrylic resin phantom with a metal alloy sample was scanned, with 450 or 720 basis images and with or without MAR. Standard deviation values for the test areas (around the metal object) were obtained as a way of measuring artifact production. Two-way analysis of variance was used with a 5% significance level. Results: There was no significant difference in artifact production among the images obtained with different numbers of basis images without MAR (P=.985). MAR significantly reduced artifact production in the test areas only in the protocol using 720 basis images (P=.017). The protocol using 450 basis images with MAR showed no significant difference in artifact production when compared to the protocol using 720 basis images with MAR (P=.579). Conclusion: Protocols with a smaller number of basis images and with MAR activated are preferable for minimizing artifact production in tomographic images without exposing the patient to a greater radiation dose.

A Comparative Performance Analysis of Blocking Artifact Reduction Algorithms (블록화 현상 제거 알고리듬의 성능 비교 분석)

  • 소현주;장익훈김남철
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.907-910
    • /
    • 1998
  • In this paper, we present a comparative performance analysis of several blocking artifact reduction algorithms. For the performance analysis, we propose a block boundary region classification algorithm which classifies each horizontal and vertical block boundary into four regions using brightness change near the block boundary. The PSNR performance of each algorithm is compared. The MSE according to each block boundary region is also compared. Experimental results show that the wavelet transform based blocking artifact reduction algorithms have better performance over the other methods.

  • PDF

Performance Comparison of Blocking Artifact Reduction Using a Block Boundary Region Classification (블록 경계 영역 분류를 이용한 블록화 현상 제거 기법의 성능 비교)

  • 소현주;장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제24권10B호
    • /
    • pp.1921-1936
    • /
    • 1999
  • In this paper, we analyze the blocking artifact in block transform-coded images and propose a classification algorithm which classifies each horizontal and vertical block boundary into four regions of EQ, BA, EE, and AE according to the characteristics of the blocking artifact. We also compare the performance of several blocking artifact reduction methods which can reduce blocking artifact in block transform-coded images well. As the blocking artifact reduction methods, the LOT, Kim's wavelet transform-based method, Yang's POCS, Paek's POCS, and Jang's CM have been selected. Experimental results show that each horizontal and vertical block boundary classified by using the proposed classification algorithm yields different characteristics of discontinuities due to the blocking artifact according to the classified region. It is also shown that the blocking artifact reduction methods using wavelet transform yield better performance over the other methods.

  • PDF

Evaluating applicability of metal artifact reduction algorithm for head & neck radiation treatment planning CT (Metal artifact reduction algorithm의 두경부 CT에 대한 적용 가능성 평가)

  • Son, Sang Jun;Park, Jang Pil;Kim, Min Jeong;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제26권1호
    • /
    • pp.107-114
    • /
    • 2014
  • Purpose : The purpose of this study is evaluation for the applicability of O-MAR(Metal artifact Reduction for Orthopedic Implants)(ver. 3.6.0, Philips, Netherlands) in head & neck radiation treatment planning CT with metal artifact created by dental implant. Materials and Methods : All of the in this study's CT images were scanned by Brilliance Big Bore CT(Philips, Netherlands) at 120kVp, 2mm sliced and Metal artifact reduced by O-MAR. To compare the original and reconstructed CT images worked on RTPS(Eclipse ver 10.0.42, Varian, USA). In order to test the basic performance of the O-MAR, The phantom was made to create metal artifact by dental implant and other phantoms used for without artifact images. To measure a difference of HU in with artifact images and without artifact images, homogeneous phantom and inhomogeneous phantoms were used with cerrobend rods. Each of images were compared a difference of HU in ROIs. And also, 1 case of patient's original CT image applied O-MAR and density corrected CT were evaluated for dose distributions with SNC Patient(Sun Nuclear Co., USA). Results : In cases of head&neck phantom, the difference of dose distibution is appeared 99.8% gamma passing rate(criteria 2 mm / 2%) between original and CT images applied O-MAR. And 98.5% appeared in patient case, among original CT, O-MAR and density corrected CT. The difference of total dose distribution is less than 2% that appeared both phantom and patient case study. Though the dose deviations are little, there are still matters to discuss that the dose deviations are concentrated so locally. In this study, The quality of all images applied O-MAR was improved. Unexpectedly, Increase of max. HU was founded in air cavity of the O-MAR images compare to cavity of the original images and wrong corrections were appeared, too. Conclusion : The result of study assuming restrained case of O-MAR adapted to near skin and low density area, it appeared image distortion and artifact correction simultaneously. In O-MAR CT, air cavity area even turned tissue HU by wrong correction was founded, too. Consequentially, It seems O-MAR algorithm is not perfect to distinguish air cavity and photon starvation artifact. Nevertheless, the differences of HU and dose distribution are not a huge that is not suitable for clinical use. And there are more advantages in clinic for improved quality of CT images and DRRs, precision of contouring OARs or tumors and correcting artifact area. So original and O-MAR CT must be used together in clinic for more accurate treatment plan.

The Motion Artifact Reduction in Photoplethysmography Using Independent Component Analysis (독립 요소 분석을 통한 Photoplethysmography에서의 동잡음 제거)

  • 김경하;유선국;김병수;김남현
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제52권10호
    • /
    • pp.598-605
    • /
    • 2003
  • In this paper, we propose the method that separates PPG signal and motion artifact signal from two input signals using new independent component analysis algorithm in time domain. In order to eliminate the large level artifact efficiently, block interleaving. lowpass time filtering and innovation processing technique were applied in ICA preprocessing, and FastICA algorithm were applicable. Experiments are made with the numerical simulation and the real PPG signal including four kinds of motion artifact pattern. Our results show that ICA can effectively detect, separate and remove motion artifact in input signals. Then from the separated signals we restore the original PPG signal and propose a new method which computes SpO$_2$ using ICA mixing matrix.

Motion Artifact Reduction Algorithm for Interleaved MRI using Fully Data Adaptive Moving Least Squares Approximation Algorithm (완전 데이터 적응형 MLS 근사 알고리즘을 이용한 Interleaved MRI의 움직임 보정 알고리즘)

  • Nam, Haewon
    • Journal of Biomedical Engineering Research
    • /
    • 제41권1호
    • /
    • pp.28-34
    • /
    • 2020
  • In this paper, we introduce motion artifact reduction algorithm for interleaved MRI using an advanced 3D approximation algorithm. The motion artifact framework of this paper is data corrected by post-processing with a new 3-D approximation algorithm which uses data structure for each voxel. In this study, we simulate and evaluate our algorithm using Shepp-Logan phantom and T1-MRI template for both scattered dataset and uniform dataset. We generated motion artifact using random generated motion parameters for the interleaved MRI. In simulation, we use image coregistration by SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) to estimate the motion parameters. The motion artifact correction is done with using full dataset with estimated motion parameters, as well as use only one half of the full data which is the case when the half volume is corrupted by severe movement. We evaluate using numerical metrics and visualize error images.

Intra-Motion Compensation Using CSRS method in MRI

  • Ro, Y.M.;Yi, J.H.;Cho, Z.H.
    • Journal of Biomedical Engineering Research
    • /
    • 제15권4호
    • /
    • pp.377-382
    • /
    • 1994
  • In the conventional Fourier imaging method in MRI (Magnetic Resonance Imaging), intramotion such as pulsatile flow makes zipper-like artifact along the phase encoding direction. On the other hand, line-integral projection reconstruction (LPR) method has advantages such as imaging of short T2, object and reduction of the flow artifact by elimination of the flow-induced phase fluctuation. The LPR, however, necessarily requires time consuming filtering and back-projection processes, so that the reconstruction takes long time. To overcome the long reconstruction time of the LPR and to obtain the flow artifact reduction effect, we adopted phase corrected concentric square raster sampling (CSRS) method and improved its imaging performance. The CSRS is a fast reconstruction method which has the same properties with the LPR. In this paper, we proposed a new method of flow artifact reduction using the CSRS method. Through computer simulations and experiments, we verified that the proposed method can eliminate phase fluctuations, thereby reducing the flow artifact and re- markably shorten the reconstruction time which required long time in the LPR.

  • PDF

Hybrid model-based and deep learning-based metal artifact reduction method in dental cone-beam computed tomography

  • Jin Hur;Yeong-Gil Shin;Ho Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2854-2863
    • /
    • 2023
  • Objective: To present a hybrid approach that incorporates a constrained beam-hardening estimator (CBHE) and deep learning (DL)-based post-refinement for metal artifact reduction in dental cone-beam computed tomography (CBCT). Methods: Constrained beam-hardening estimator (CBHE) is derived from a polychromatic X-ray attenuation model with respect to X-ray transmission length, which calculates associated parameters numerically. Deep-learning-based post-refinement with an artifact disentanglement network (ADN) is performed to mitigate the remaining dark shading regions around a metal. Artifact disentanglement network (ADN) supports an unsupervised learning approach, in which no paired CBCT images are required. The network consists of an encoder that separates artifacts and content and a decoder for the content. Additionally, ADN with data normalization replaces metal regions with values from bone or soft tissue regions. Finally, the metal regions obtained from the CBHE are blended into reconstructed images. The proposed approach is systematically assessed using a dental phantom with two types of metal objects for qualitative and quantitative comparisons. Results: The proposed hybrid scheme provides improved image quality in areas surrounding the metal while preserving native structures. Conclusion: This study may significantly improve the detection of areas of interest in many dentomaxillofacial applications.