• 제목/요약/키워드: Articular chondrocytes

검색결과 107건 처리시간 0.027초

Concentration-dependent in vitro Anti-osteoarthritis Effects of Mixed Formula - Pomegranate Concentrate Powder: Eucommiae Cortex: Achyranthis Radix 5:4:1 (g/g) on the Primary Cultured Rat Articular Chondrocytes

  • Choi, Beom Rak;Ku, Sae Kwang;Kang, Su Jin;Park, Hye Rim;Sung, Mi Sun;Lee, Young Joon;Park, Ki Moon
    • 동의생리병리학회지
    • /
    • 제33권2호
    • /
    • pp.131-140
    • /
    • 2019
  • The objective of present study is to evaluate concentration-dependent in vitro anti-osteoarthritic (OA) effects of synergic mixed formula consisted of dried pomegranate juice concentrate powder, Eucommiae Cortex aqueous extract and Achyranthis Radix aqueous extract 5:4:1 (g/g) mixture on the primary cultured rat articular chondrocytes. First, any cytotoxic effect of mixture was observed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium Bromide) assay. Next, cyto-protective effect of test substances was evaluated by using the recombinant human interleukin $(rhIL)-1{\alpha}$ induced chondrocytes. In addition, anti-inflammatory effects were also observed on the lipopolysaccaride (LPS) treated chondrocytes through prostaglandin $E_2(PGE_2)$ productions and 5-lipoxygenase (LPO) activities, and inhibitory effects on matrix metalloproteinase (MMP)-2 and MMP-9 activities were observed on $rhIL-1{\alpha}$ treated chondrocytes with their extracellular matrix (ECM) related mRNA expressions. No obvious cytotoxic effects of mixture were demonstrated. Inflammatory damages of chondrocytes and related ECM degradations induced by treatment of LPS or $rhIL-1{\alpha}$ were significantly and concentration-dependently inhibited by pretreatment of mixture from a concentration level of 0.001 mg/ml to 1 mg/ml. In addition, mixture showed $IC_{50}$ for $rhIL-1{\alpha}-induced$ MMP-2 and MMP-9 activities as 44.01 and $162.47{\mu}g/ml$, and also showed $EC_{50}$ for $rhIL-1{\alpha}-induced$ inhibition of collagen type II, SOX9 and aggrecan mRNA expression as 8.61, 10.79 and $4.47{\mu}g/ml$, respectively. It is observed that mixture showed concentration-dependent anti-inflammatory and cytoprotective ECM preserved effects on the primary cultured rat articular chondrocytes without cytotoxicity.

Paclitaxel에 의한 관절연골 세포의 capase-비의존적 mitotic catastrophe 유도 (Paclitaxel Induced Caspase-Independent Mitotic Catastrophe in Rabbit Articular Chondrocyte)

  • 임정희;김송자
    • 생명과학회지
    • /
    • 제20권4호
    • /
    • pp.519-527
    • /
    • 2010
  • Paclitaxel은 미세소관의 탈중합을 억제하는 시약으로 알려져 있다. Paclitaxel은 다양한 세포에서 세포 내 방추체를 안정화시킴으로써 유사분열 억제 및 세포사멸을 유도한다. 본 실험에서는 토끼 관절 연골세포에서 paclitaxel이 연골세포의 증식과 사멸에 미치는 효과에 대한 연구를 수행하였다. MTT assay를 수행한 결과 paclitaxel은 연골세포에서 농도 의존적으로 세포 증식을 억제한다는 것을 확인 할 수 있었으며, FACS analysis와 Western blot analysis를 수행한 결과, paclitaxel이 G2/M 정지를 유도하는 것을 확인하였다. 또한, paclitaxel이 비정상적인 세포 분열유도와 핵 단편분절 유도없이 일어나는 mitotic catastrophe 즉, caspase-3 비의존적인 세포사멸을 유도하였다. Paclitaxel을 처리한 세포에서 일어나는 이러한 mitotic catastrophe에 의한 세포 죽음은 G1/S기의 진행을 억제하는 시약인 thymidine을 처리하는 것에 의해 억제되는 것을 확인할 수 있었다. 이러한 결과를 종합해 볼 때, paclitaxel에 의한 토끼 관절 연골 세포에서의 세포 죽음은 caspase-3 비의존적인 mitotic catastrophe에 의해 일어나는 것으로 사료되어진다.

Culture of Human Articular Chondrocytes in Serum-free Media

  • Choi, Yong-Soo;Lim, Sang-Min;Lee, Chang-Woo;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.335-339
    • /
    • 2003
  • 본 연구에서는 연골조직으로부터 세포를 분리한 후 10%의 혈청 첨가 배지와 무혈청 배지에서의 세포 성장속도, GAGs 합성 및 Col. II의 발현을 확인하였다. EGF를 첨가한 무혈청 배지를 연골세포의 증식에 매우 효과적이었으나 GAGs 합성 및 Col. II 의 합성을 저해하였다. 또한 무혈청 배지에서 배양한 세포를 차후 신체내로 이식한다면 연골세포의 특성인 Col. II를 재합성할 수 있음을 간접적으로 확인하였다. 이는 무혈청 배지를 이용하여 평판배양 시 짧은 기간 내 연골세포 치료제로서 가능한 세포수를 얻기 위한 모델로서 유용할 것으로 생각된다. 또한 계대배양에 따른 분화 및 형태의 변화 등의 문제점들은 생분해성 지지체와 연계하여 해결할 수 있을 것으로 생각되며, 차후 위의 SFM을 이용한 3D 배양에 대한 연구를 수행할 예정이다.

  • PDF

Effects of prunetin on the proteolytic activity, secretion and gene expression of MMP-3 in vitro and production of MMP-3 in vivo

  • Nam, Dae Cheol;Kim, Bo Kun;Lee, Hyun Jae;Shin, Hyun-Dae;Lee, Choong Jae;Hwang, Sun-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.221-228
    • /
    • 2016
  • We investigated whether prunetin affects the proteolytic activity, secretion, and gene expression of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective effect of prunetin. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcriptionpolymerase chain reaction (RT-PCR) was used to measure interleukin-$1{\beta}$ (IL-$1{\beta}$)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and ADAMTS-5. In rabbit articular chondrocytes, the effects of prunetin on IL-$1{\beta}$-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of prunetin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) prunetin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5; (2) prunetin inhibited the secretion and proteolytic activity of MMP-3; (3) prunetin suppressed the production of MMP-3 protein in vivo. These results suggest that prunetin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes.

p38 Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyclooxygenase-2 Expression of Articular Chondrocytes

  • Yu, Seon-Mi;Cheong, Seon-Woo;Cho, Sam-Rae;Kim, Song-Ja
    • IMMUNE NETWORK
    • /
    • 제6권3호
    • /
    • pp.117-122
    • /
    • 2006
  • Background: Caveolin, a family of integral membrane proteins are a principal component of caveolae membranes. In this study, we investigated the effect of p38 kinase on differentiation and on inflammatory responses in sodium nitroprusside (SNP)-treated chondrocytes. Methods: Rabbit articular chondrocytes were prepared from cartilage slices of 2-week-old New Zealand white rabbits by enzymatic digestion. SNP was used as a nitric oxide (NO) donor. In this experiments measuring SNP dose response, primary chondrocytes were treated with various concentrations of SNP for 24h. The time course of the SNP response was determined by incubating cells with 1mM SNP for the indicated time period $(0{\sim}24h)$. The cyclooxygenase-2 (COX-2) and type II collagen expression levels were determined by immunoblot analysis, and prostaglandin $E_2\;(PGE_2)$ assay was used to measure the COX-2 activity. The tyrosine phosphorylation of caveolin-1 was determined by immunoblot analysis and immunostaining. Results: SNP treatment stimulated tyrosine phosphorylation of caveolin-1 and activation of p38 kinase. SNP additionally caused dedifferentiation and inflammatory response. We showed previously that SNP treatment stimulated activation of p38 kinase and ERK-1/-2. Inhibition of p38 kinase with SB203580 reduced caveolin-1 tyrosine phosphorylation and COX-2 expression but enhanced dedifferentiation, whereas inhibition of ERK with PD98059 did not affect caveolin-1 tyrosine phosphorylation levels, suggesting that ERK at least is not related to dedifferentiation and COX-2 expression through caveolin-1 tyrosine phosphorylation. Conclusion: Our results indicate that SNP in articular chondrocytes stimulates dedifferentiation and inflammatory response via p38 kinase signaling in association with caveolin-1 phosphorylation.

Development of Serum-Free Media for Primary Culture of Human Articular Chondrocytes

  • CHOI YONG SOO;LIM SANG MIN;LEE CHANG WOO;KIM DONG-IL
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1299-1303
    • /
    • 2005
  • Human articular chondrocytes (HAC) were cultivated as a monolayer in a serum-free medium for primary culture (SFM-P). An optimized SFM-P provides $95\%$ proliferation rate of that obtainable from primary and secondary chondrocyte cultures grown in a control medium with serum. The gradual decrease in the amounts of synthesized glycosaminoglycan and type II collagen was improved by coating the culture dishes with type IV collagen and fibronectin. A significant improvement in the expression of type II collagen and aggrecan mRNA could be achieved. In addition, the monolayer cultures showed better synthesis of the extracellular matrices than alginate-bead cultures in SFM-P.

Wnt signaling in cartilage development and degeneration

  • Chun, Jang-Soo;Oh, Hwan-Hee;Yang, Si-Young;Park, Mee-Young
    • BMB Reports
    • /
    • 제41권7호
    • /
    • pp.485-494
    • /
    • 2008
  • The Wnt signaling network, which is composed of Wnt ligands, receptors, antagonists, and intracellular signaling molecules, has emerged as a powerful regulator of cell fate, proliferation, and function in multicellular organisms. Over the past two decades, the critical role of Wnt signaling in embryonic cartilage and bone development has been well established, and much has been learnt regarding the role of Wnt signaling in chondrogenesis and cartilage development. However, relatively little is known about the role of Wnt signaling in adult articular cartilage and degenerative cartilage tissue. This review will briefly summarize recent advances in Wnt regulation of chondrogenesis and hypertrophic maturation of chondrocytes, and review data concerning the role of Wnt signaling in the maintenance and degeneration of articular chondrocytes and cartilage.

Oxysterol 25-hydroxycholesterol as a metabolic pathophysiological factors of osteoarthritis induces apoptosis in primary rat chondrocytes

  • Seo, Yo-Seob;Cho, In-A;Kim, Tae-Hyeon;You, Jae-Seek;Oh, Ji-Su;Lee, Gyeong-Je;Kim, Do Kyung;Kim, Jae-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.249-257
    • /
    • 2020
  • The aim of the present study was to investigate the pathophysiological etiology of osteoarthritis that is mediated by the apoptosis of chondrocytes exposed to 25-hydroxycholesterol (25-HC), an oxysterol synthesized by the expression of cholesterol-25-hydroxylase (CH25H) under inflammatory conditions. Interleukin-1β induced the apoptosis of chondrocytes in a dose- dependent manner. Furthermore, the production of 25-HC increased in the chondrocytes treated with interleukin-1β through the expression of CH25H. 25-HC decreased the viability of chondrocytes. Chondrocytes with condensed nucleus and apoptotic populations increased by 25-HC. Moreover, the activity and expression of caspase-3 were increased by the death ligand-mediated extrinsic and mitochondria-dependent intrinsic apoptotic pathways in the chondrocytes treated with 25-HC. Finally, 25-HC induced not only caspase-dependent apoptosis, but also induced proteoglycan loss in articular cartilage ex vivo cultured rat knee joints. These data indicate that 25-HC may act as a metabolic pathophysiological factor in osteoarthritis that is mediated by progressive chondrocyte death in the articular cartilage with inflammatory condition.

Chondroprotective Effects of Wogonin in Experimental Models of Osteoarthritis in vitro and in vivo

  • Park, Jin Sung;Lee, Hyun Jae;Lee, Dong Yeong;Jo, Ho Seung;Jeong, Jin Hoon;Kim, Dong Hee;Nam, Dae Cheol;Lee, Choong Jae;Hwang, Sun-Chul
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.442-448
    • /
    • 2015
  • We evaluated the chondroprotective effects of wogonin by investigating its effects on the gene expression and production of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as on production of MMP-3 in the rat knee. Rabbit articular chondrocytes were cultured in a monolayer, and RT-PCR was used to measure interleukin-$1{\beta}$ (IL-$1{\beta}$)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and type II collagen. In rabbit articular chondrocytes, the effects of wogonin on IL-$1{\beta}$-induced production and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of wogonin on MMP-3 protein production was also examined in vivo. In rabbit articular chondrocytes, wogonin inhibited the expression of MMP-3, MMP-1, MMP-13, and ADAMTS-4, but increased expression of type II collagen. Furthermore, wogonin inhibited the production and proteolytic activity of MMP-3 in vitro, and inhibited production of MMP-3 protein in vivo. These results suggest that wogonin can regulate the gene expression and production of MMP-3, by directly acting on articular chondrocytes.

생쥐 대퇴골단(大腿骨端) 골형성(骨形成)에 관(關)한 전자현미경적(電子顯微鏡的) 연구(硏究) (The Fine Structure of the Femoral Epiphysis of Growing Mouse: Endochondral Osteogenesis)

  • 윤재룡;김용주;오창석
    • Applied Microscopy
    • /
    • 제24권1호
    • /
    • pp.59-76
    • /
    • 1994
  • Fine structure of the distal femoral epiphysis of growing mouse was studied by electron microscopy. The first morphological evidence of developing secondary center of ossification in the distal femoral epiphysis was found at newborn mouse. Ossification center was in the form of multiple foci of calcification and its cells were represented by remnant of degenerated cells within large lacunae that were separated by mineralized cartilaginous septa. Endochondral ossification beneath the articular cartilage proceeded in a less orderly manner than metaphyseal endochondral ossification. Columns of hypertrophied chondrocytes were not distinctly parallel to intercellular mineralized septa in all direction. Hypertrophied chondrocytes in the inner zone of the epiphseal center of ossification showed disintegrated. Resorption of mineralized cartilaginous septa was undertaken by perivascular cells and multinucleated chondroclasts. Resorption of the calcified cartilage was restricted to the region of ruffled border of the chondroclast. Growth along the metaphyseal side of the epiphyseal center of ossification was different from that along the articular surface. As the secondary center expanded toward the metaphyseal side, many vascular buds penetrated unmineralized cartilaginous septa and invaded viable chondrocytes. Many hypertrophied chondrocytes bodering the metaphyseal side of bone center remained viable after they became embedded in mineralized cartilaginous septa. This result suggested that the hypertrophied.

  • PDF