• 제목/요약/키워드: Arthrobacter chlorophenolicus

검색결과 2건 처리시간 0.015초

4-Chlorophenol 분해박테리아 Arthrobacter chlorophenolicus A6로부터의 monooxygenase의 복제 및 대량발현과 정제 그리고 기질분해활성도 분석 (Overexpression and Purification of Monooxygenases Cloned from Arthrobacter chlorophenolicus A6 for Enzymatic Decomposition of 4-Chlorophenol)

  • 류송정;이소라;김한승
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.47-55
    • /
    • 2014
  • Arthrobacter chlorophenolicus A6 possesses several monooxygenases (CphC-I, CphC-II, and CphB) that can catalyze the transformation of 4-chlorophenol (4-CP) to hydroxylated intermediates in the initial steps of substrate metabolism. The corresponding genes of the monooxygenases were cloned, and the competent cells were transformed with these recombinant plasmids. Although CphC-II and CphB were expressed as insoluble forms, CphC-I was successfully expressed as a soluble form and isolated by purification. The specific activity of the purified CphC-I was analyzed by using 4-CP, 4-chlorocatechol (4-CC), and catechol (CAT) as substrates. The specific activities for 4-CP, 4-CC, and CAT were determined to be 0.312 U/mg, 0.462 U/mg, 0.246 U/mg, respectively. The results of this study indicated that CphC-I is able to catalyze the degradation of 4-CC and CAT in addition to 4-CP, which is a primary substrate. This research is expected to provide the fundamental information for the development of an eco-friendly biochemical degradation of aromatic hydrocarbons.

Functional Expression of Amylosucrase, a Glucan-Synthesizing Enzyme, from Arthrobacter chlorophenolicus A6

  • Seo, Dong-Ho;Jung, Jong-Hyun;Choi, Hyun-Chang;Cho, Hyun-Kuk;Kim, Hee-Hang;Ha, Suk-Jin;Yoo, Sang-Ho;Cha, Jaeho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권9호
    • /
    • pp.1253-1257
    • /
    • 2012
  • A gene (acas) designated as ${\alpha}$-amylase was cloned from Arthrobacter chlorophenolicus A6. The multiple amino acid sequence analysis and functional expression of acas revealed that this gene really encoded an amylosucrase (ASase) instead of ${\alpha}$-amylase. In fact, the recombinant enzyme exhibited typical ASase activity by showing both sucrose hydrolysis and glucosyltransferase activities. The purified enzyme has a molecular mass of 72 kDa and exhibits optimal hydrolysis activity at $45^{\circ}C$ and a pH of 8.0. The analysis of the oligomeric state of ACAS with gel permeation chromatography revealed that the ACAS existed as a monomer.