• 제목/요약/키워드: Arterial smooth muscle

Search Result 105, Processing Time 0.027 seconds

Diverse Mechanisms of Relaxin's Action in the Regulation of Smooth Muscles and Extracellular Matrix of Vasculature and Fibrosis (혈관과 섬유증의 평활근 및 세포외기질 조절에 대한 릴랙신의 다양한 작용기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.175-188
    • /
    • 2022
  • Relaxin has been demonstrated to have regulatory functions on both the smooth muscle and extracellular matrix (ECM) of blood vessels and fibrotic organs. The diverse mechanisms by which relaxin acts on small resistance arteries and fibrotic organs, including the bladder, are reviewed here. Relaxin induces vasodilation by inhibiting the contractility of vascular smooth muscles and by increasing the passive compliance of vessel walls through the reduction of ECM components, such as collagen. The primary cellular mechanism whereby relaxin induces arterial vasodilation is mediated by the endothelium-dependent production of nitric oxide (NO) through the activation of RXFP1/PI3K, Akt phosphorylation, and eNOS. In addition, relaxin triggers different alternative pathways to enhance the vasodilation of renal and mesenteric arteries. In small renal arteries, relaxin stimulates the activation of the endothelial MMPs and EtB receptors and the production of VEGF and PlGF to inhibit myogenic contractility and collagen deposition, thereby bringing about vasodilation. Conversely, in small mesenteric arteries, relaxin augments bradykinin (BK)-evoked relaxation in a time-dependent manner. Whereas the rapid enhancement of the BK-mediated relaxation is dependent on IKCa channels and subsequent EDH induction, the sustained relaxation due to BK depends on COX activation and PGI2. The anti-fibrotic effects of relaxin are mediated by inhibiting the invasion of inflammatory immune cells, the endothelial-to-mesenchymal transition (EndMT), and the differentiation and activation of myofibroblasts. Relaxin also activates the NOS/NO/cGMP/PKG-1 pathways in myofibroblasts to suppress the TGF-β1-induced activation of ERK1/2 and Smad2/3 signaling and deposition of ECM collagen.

Effects and Molecular Mechanisms of Eupatorium chinensis var. simplicifolium Extract on Abnormal Proliferation of Vascular Smooth Muscle Cells (등골나물추출물의 혈관 평활근 세포의 비정상 증식에 대한 억제 효과 및 분자기작)

  • Kim, Min-Jeong;Kim, Jihee;Lee, Jin-Ho;Kim, Minah;Woo, Keunjung;Kim, Han Sung;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.787-795
    • /
    • 2021
  • Eupatorium chinensis var. simplicifolium (EUC) has anti-inflammatory and antioxidant effects. Young sprouts of EUC have been used as food for a long time, and the whole EUC plant has been used as an herbal remedy in oriental medicine. Arteriosclerosis, or chronic inflammation in arterial vessels, is a cardiovascular disease and is involved in various disorders. Cardiovascular diseases such as restenosis and neuropathic hyperplasia are mainly caused by abnormal growth and movement due to multiple growth factors in vascular smooth muscle cells (VSMCs). Platelet-derived growth factor (PDGF) is a mitogen released from damaged vessel walls and is involved in the proliferation and migration of VSMCs. To determine the effects of EUC on the abnormal proliferation and migration of VSMCs, the present study investigated intracellular signaling pathways in PDGF-BB-induced VSMCs treated with and without EUC. Pretreating PDGF-BB-induced VSMCs with EUC tended to effectively decrease cell proliferation and migration. Subsequently, the intracellular growth-related signaling pathways of AKT, phospholipase C gamma (PLC-γ), and mitogen-activated protein kinase (MAPK) were investigated using western blotting to confirm inhibited phosphorylation. Furthermore, flow cytometry data showed that EUC blocked the cell cycle of VSMCs. These results suggest that EUC can inhibit the proliferation and migration of VSMCs by controlling the cell cycle and growth factor receptors. Furthermore, this indicates that EUC can be used as a preventative against cardiovascular disease resulting from abnormal proliferation and migration of VSMCs.

Disappearance of Hypoxic Pulmonary Vasoconstriction and $O_2$-Sensitive Nonselective Cationic Current in Arterial Myocytes of Rats Under Ambient Hypoxia

  • Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.463-468
    • /
    • 2013
  • Acute hypoxia induces contraction of pulmonary artery (PA) to protect ventilation/perfusion mismatch in lungs. As for the cellular mechanism of hypoxic pulmonary vasoconstriction (HPV), hypoxic inhibition of voltage-gated $K^+$ channel (Kv) in PA smooth muscle cell (PASMC) has been suggested. In addition, our recent study showed that thromboxane $A_2$ ($TXA_2$) and hypoxia-activated nonselective cation channel ($I_{NSC}$) is also essential for HPV. However, it is not well understood whether HPV is maintained in the animals exposed to ambient hypoxia for two days (2d-H). Specifically, the associated electrophysiological changes in PASMCs have not been studied. Here we investigate the effects of 2d-H on HPV in isolated ventilated/perfused lungs (V/P lungs) from rats. HPV was almost abolished without structural remodeling of PA in 2d-H rats, and the lost HPV was not recovered by Kv inhibitor, 4-aminopyridine. Patch clamp study showed that the hypoxic inhibition of Kv current in PASMC was similar between 2d-H and control. In contrast, hypoxia and $TXA_2$-activated $I_{NSC}$ was not observed in PASMCs of 2d-H. From above results, it is suggested that the decreased $I_{NSC}$ might be the primary functional cause of HPV disappearance in the relatively early period (2 d) of hypoxia.

Comparison of Green Tea Extract and Epigallocatechin Gallate on Blood Pressure and Contractile Responses of Vascular Smooth Muscle of Rats

  • Lim, Dong-Yoon;Lee, Eun-Sook;Park, Hyeon-Gyoon;Kim, Byeong-Cheol;Hong, Soon-Pyo;Lee, Eun-Bang
    • Archives of Pharmacal Research
    • /
    • v.26 no.3
    • /
    • pp.214-223
    • /
    • 2003
  • The present study was conducted to investigate the effects of green tea extract (GTE) on arterial blood pressure and contractile responses of isolated aortic strips of the normotensive rats and to establish the mechanism of action. The phenylephrine ($10^{-6}~10^{-5}M$)-induced contractile responses were greatly inhibited in the presence of GTE (0.3~1.2 mg/mL) in a dose-dependent fashion. Also, high potassium ($3.5{\times}10^{-2}~5.6{\times}10^{-2}{\;}M$)-induced contractile responses were depressed in the presence of 0.6~1.2 mg/mL of GTE, but not affected in low concentration of GTE (0.3 mg/mL). However, epigallocatechin gallate (EGCG, $4~12{\;}{\mu}g/mL$) did not affect the contractile responses evoked by phenylephrine and high $K^+$. GTE (5~20 mg/kg) given into a femoral vein of the normotensive rat produced a dose-dependent depressor response, which is transient. Interestingly, the infusion of a moderate dose of GTE (10 mg/kg/30 min) made a significant reduction in pressor responses induced by intravenous norepinephrine. However, EGCG (1 mg/kg/30 min) did not affect them. Collectively, these results obtained from the present study demonstrate that intravenous GTE causes a dose-dependent depressor action in the anesthetized rat at least partly through the blockade of adrenergic $\alpha_1$-receptors. GTE also causes the relaxation in the isolated aortic strips of the rat via the blockade of adrenergic $\alpha_1$-receptors, in addition to the unknown direct mechanism. It seems that there is a big difference in the vascular effect between GTE and EGCG.

Effects of Na-K Pump Inhibition on Contractility of Resistant Arteries in the Rabbit (저항동맥의 수축성에 대한 연구)

  • Ham, Si-Yeong;Kim, Gi-Hwan;Seo, Gyeong-Pil
    • Journal of Chest Surgery
    • /
    • v.28 no.12
    • /
    • pp.1079-1095
    • /
    • 1995
  • Recently endogenous digitalis-like substances were found in the blood of various cardiovascular diseases and they have been considered one of the causes of evoking hypertension. However, the mechanism of endogenous digitalis-like substances-induced hypertension is not clarified yet. Therefore, the effects of Na-K pump inhibition on the contractility of vascular smooth muscle[conduit and resistant artery were investigated, using organ bath and bioassay experiment. Aortic and carotid arterial rings[conduit artery and the branches of brachial and superior mesenteric artery[resistant artery were used to find the effect of Na-K pump inhibition. The results obtained were as followes;The magnitudes of contractions induced by norepinephrine, serotonin, or acetylcholine in all these arteries were significantly increased by the inhibition of Na-K pump. The increased contractile responses to these agonists, especially to serotonin, were much more prominant in resistant arteries. Nitroprusside-induced relaxations were attenuated by Na-K pump inhibition and there were no significant differences in the effects of Na-K pump inhibition on nitroprusside-induced relaxations of these blood vessels. Endothelium-dependent relaxation was suppressed by the inhibition of Na-K pump, especially by the administration of ouabain, and this inhibitory effect was much more prominent in the branches of superior mesenteric artery, compared with other arteries. In the branches of superior mesenteric arteries, endothelium-dependent relaxation was completely blocked by ouabain. The release of EDRF was partially suppressed by Na-K pump inhibition.From the above results, it is suggested that the hypertension due to the increase in vascular resistance can be evoked by the inhibition of Na-K pump and endogenous digitalis-like substances induce hypertension through this mechanism.

  • PDF

Effect of Cyclic Nucleotides on Phorbol Ester-Induced Contraction in Rabbit Carotid Artery

  • Jung, Dong-Keun;Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.39-50
    • /
    • 1995
  • This study was designed to clarify the action of cyclic nucleotides, cyclic AMP and cyclic GMP, on phorbol 12,13-dibutyrate (PDBu)-induced contraction in rings isolated from rabbit carotid artery. Arterial rings, 2 mm in width, were myographied isometrically in an isolated organ bath. PDBu produced slowly developing, sustained contraction in rabbit carotid artery, in a dose dependent manner, which was independent of extracellular $Ca^{2+}$ PDBu-induced contraction was relaxed by staurosporine, which suggests that PDBu-induced contraction is mediated by protein kinase C (PKC). $^{45}Ca^{2+}$ uptake by rabbit carotid artery was increased by PDBu during depolarization, but not in control. Isoproterenol and sodium nitroprusside (SNP) relaxed phenylephrine-induced contraction. However, SNP but not isoproterenol relaxed the contraction induced by PDBu. Acetylcholine relaxed PDBu-induced contraction in the presence of the endothelium. 8-bromo-cyclic AMP, a permeable analogue of cyclic AMP, suppressed phenylephrine-induced contraction but not PDBu-induced contraction. 8-bromo cyclic GMP relaxed both of them with dose dependency. A large dose of forskolin relaxed PDBu-induced contraction. PDBu increased cyclic AMP without considerable change in the level of cyclic GMP. Based on these findings, PDBu-induced contraction of rabbit carotid artery was relaxed by cyclic GMP more effectively than cyclic AMP, and the action of cyclic AMP could be mediated by cyclic GMP dependent protein kinase. Therefore it is suggested that the antagonistic action between protein kinase C and cyclic GMP-dependent protein kinase plays a major role in the regulation of vascular tone.

  • PDF

The Effect of Silymarin and Ethanol Intake on Vascular Contractility (엉겅퀴 유래 Silymarin의 단독 및 알코올 병용 시 혈압 조절 효과)

  • Je, Hyun Dong;Min, Young Sil
    • Journal of Industrial Convergence
    • /
    • v.20 no.7
    • /
    • pp.131-137
    • /
    • 2022
  • In the study, we endeavored to assess the convergence effect of Silybum marianum-derived silymarin and epidemiologically-correlated alcohol intake on vascular contractility and to determine the mechanism involved. There were few reports addressing the question whether thin or thick filament modulation is included in ethanol and silymarin-induced regulation. We hypothesized that ethanol at a low concentration and silymarin play a role in agonist-dependent regulation of vascular contractility. Denuded arterial muscles of Sprague-Dawley male rats were suspended in organ baths and isometric tensions were transduced and recorded using isometric transducers and an automatic data acquisition system. Interestingly, both silymarin and ethanol didn't encourage silymarin alone-induced inhibition in agonists-induced contraction suggesting that endothelial nitric oxide synthesis might be involved in ethanol or silymarin-induced modulation of vascular contractility and additional pathways besides endothelial nitric oxide synthesis such as ROCK inactivation might be involved in the silymarin-induced modulation of vascular contractility.

Inhibition of voltage-dependent K+ channels by antimuscarinic drug fesoterodine in coronary arterial smooth muscle cells

  • Park, Seojin;Kang, Minji;Heo, Ryeon;Mun, Seo-Yeong;Park, Minju;Han, Eun-Taek;Han, Jin-Hee;Chun, Wanjoo;Park, Hongzoo;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.397-404
    • /
    • 2022
  • Fesoterodine, an antimuscarinic drug, is widely used to treat overactive bladder syndrome. However, there is little information about its effects on vascular K+ channels. In this study, voltage-dependent K+ (Kv) channel inhibition by fesoterodine was investigated using the patch-clamp technique in rabbit coronary artery. In whole-cell patches, the addition of fesoterodine to the bath inhibited the Kv currents in a concentration-dependent manner, with an IC50 value of 3.19 ± 0.91 μM and a Hill coefficient of 0.56 ± 0.03. Although the drug did not alter the voltage-dependence of steady-state activation, it shifted the steady-state inactivation curve to a more negative potential, suggesting that fesoterodine affects the voltage-sensor of the Kv channel. Inhibition by fesoterodine was significantly enhanced by repetitive train pulses (1 or 2 Hz). Furthermore, it significantly increased the recovery time constant from inactivation, suggesting that the Kv channel inhibition by fesoterodine is use (state)-dependent. Its inhibitory effect disappeared by pretreatment with a Kv 1.5 inhibitor. However, pretreatment with Kv2.1 or Kv7 inhibitors did not affect the inhibitory effects on Kv channels. Based on these results, we conclude that fesoterodine inhibits vascular Kv channels (mainly the Kv1.5 subtype) in a concentration- and use (state)-dependent manner, independent of muscarinic receptor antagonism.

Inhibition of Neointima Formation and Migration of Vascular Smooth Muscle Cells by Anti-vascular Endothelial Growth Factor Receptor-1 (Flt-4) Peptide in Diabetic Rats (당뇨병 쥐에서 혈관내피 성장인자 수용체-1 차단 펩타이드를 이용한 신내막 형성과 혈관평활근세포 이동의 억제)

  • Jo, Min-Seop;Yoo, Ki-Dong;Park, Chan-Beom;Cho, Deog-Gon;Cho, Kue-Do;Jin, Ung;Moon, Kun-Woong;Kim, Chul-Min;Wang, Young-Pil;Lee, Sun-Hee
    • Journal of Chest Surgery
    • /
    • v.40 no.4 s.273
    • /
    • pp.264-272
    • /
    • 2007
  • Background: Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis, including stimulating the proliferation and migration of vascular smooth muscle cells (VSMCs). It has been known that diabetes is associated with accelerated cellular proliferation via VEGF, as compared to that under a normal glucose concentration. We investigated the effects of selective blockade of a VEGF receptor by using anti-Flt-1 peptide on the formation and hyperplasia of the neointima in balloon injured-carotid arteries of OLETF rats and also on the in vitro VSMCS' migration under high glucose conditions. Material and Method: The balloon-injury method was employed to induce neointima formation by VEGF. For f4 days beginning 2 days before the ballon injury, placebo or vascular endothelial growth factor receptor-1 (VEGFR-1) specific peptide (anti-Flt-1 peptide), was injected at a dose of 0.5mg/kg daily into the OLETF rats. At 14 days after balloon injury, the neointimal proliferation and vascular luminal stenosis were measured, and cellular proliferation was assessed by counting the proliferative cell nuclear antigen (PCNA) stained cells. To analyze the effect of VEGF and anti-Flt-1 peptide on the migration of VSMCs under a high glucose condition, transwell assay with a matrigel filter was performed. And finally, to determine the underlying mechanism of the effect of anti-Flt-1 peptide on the VEGF-induced VSMC migration in vitro, the expression of matrix metalloproteinase (MMP) was observed by performing reverse transcription-polymerase chain reaction (RT-PCR). Result: Both the neointimal area and luminal stenosis associated with neointimal proliferation were significantly decreased in the anti-Flt-1 peptide injected rats, ($0.15{\pm}0.04 mm^2$ and $ 36.03{\pm}3.78%$ compared to $0.24{\pm}0.03mm^2\;and\;61.85{\pm}5.11%$, respectively, in the placebo-injected rats (p<0.01, respectively). The ratio of PCNA(+) cells to the entire neointimal cells was also significantly decreased from $52.82{\pm}4.20%\;to\;38.11{\pm}6.89%$, by the injected anti-Flt-1 peptide (p<0.05). On the VSMC migration assay, anti-Flt-1 peptide significantly reduced the VEGF-induced VMSC migration by about 40% (p<0.01). Consistent with the effect of anti-Flt-1 peptide on VSMC migration, it also obviously attenuated the induction of the MMP-3 and MMP-9 mRNA expressions via VEGF in the VSMCS. Conclusion: Anti-Flt-1 peptide inhibits the formation and hyperplasia of the neointima in a balloon-injured carotid artery model of OLETF rats. Anti-Flt-1 peptide also inhibits the VSMCs' migration and the expressions of MMP-3 and MMP-9 mRNA induced by VEGF under a high glucose condition. Therefore, these results suggest that specific blockade of VEGFR-1 by anti-Flt-1 peptide may have therapeutic potential against the arterial stenosis of diabetes mellitus patients or that occurring under a high glucose condition.

Histological Characteristics of Right Gastroepiploic Artery for Coronary Artery Bypass Graft (관상동맥우회 이식편으로서의 우위대망동맥의 조직학적 특징)

  • Lee, Hyun-Woo;Song, Hyun;Yoo, Dong-Gon;Lim, Han-Jung;Lee, Jae-Won;Song, Meong-Gun
    • Journal of Chest Surgery
    • /
    • v.32 no.10
    • /
    • pp.883-890
    • /
    • 1999
  • Long term patency of arterial graft has been better than venous graft and redo coronary artery bypass grafting has been increasing, therefore, there has been an increasing need for alternative arterial grafts except internal thoracic artery(ITA). Material and Method: Right gastroepiploic arteries(RGEA) were harvested from 100 patients who had received gastrectomy for gastric cancer or ulcer. ITAs were obtained from 10 patients undergoing coronary artery bypass grafting. The length of RGEA was measured from the pyloric ring. Items of the morphometric and histologic study at the pyloric ring and sites of the 10cm and 20cm RGEA from the pyloric ring were luminal diameter, intimal thickness, medial thickness, wall thickness, degree of intimal hyperplasia, intimal thickness, medial thickness, wall thickness, degree of intimal hyperplasia, intimal thickness index, medial thickness index, and the number of discontinuities of the internal elastic lamina. Similar items were applied to the proximal site of ITAs. Result: The length of RGEA was 23${\pm}$2.7cm(range 17∼31cm). Comparing the 20cm RGEA with ITA, intimal thickness, medial thickness, wall thickness, and degree of intimal hyperplasia did not show any difference(p>0.05). However, 20cm RGEA was greater than ITA at the luminal diameter, intimal thickness index, and the number thickness and wall thickness in each site of the RGEA(pyloric ring, 10cm, 20cm) decreased from the pyloric ring to the distal sites(p<0.05). The degree of intimal hyperplasia and the number of discontinuities of the internal elastic lamina did not show any difference between the pyloric ring and 10cm, however, those of 20cm were smaller than these sites(p<0.05). RGEA had more number of discontinuities of the internal elastic lamina and rich smooth muscle cells in the media than ITA. Conclusion: The length and diameter of RGEA is good enough to reach most of the coronary arteries. Moreover, long term patency of RGEA may be improved, if anastomosed in the distal site.

  • PDF