• Title/Summary/Keyword: Arterial remodeling

Search Result 19, Processing Time 0.023 seconds

Elevated C-reactive Protein Levels are a Sign of Pulmonary Arterial Hypertension in AECOPD (만성 폐쇄성 폐질환 급성 악화 시 C-반응단백과 폐동맥 고혈압의 관계)

  • Kim, So Ri;Choe, Yeong Hun;Lee, Ka Young;Min, Kyung Hoon;Park, Seoung Ju;Lee, Heung Bum;Lee, Yong Chul;Rhee, Yang Keun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.2
    • /
    • pp.125-132
    • /
    • 2008
  • Background: In chronic obstructive pulmonary disease (COPD) patients, the serum levels of C-reactive protein (CRP) are elevated and an increase of CRP is more exaggerated in the acute exacerbation form of COPD (AECOPD) than in stable COPD. Pulmonary arterial hypertension is a common complication of COPD. An increased level of CRP is known to be associated with the risk of systemic cardio-vascular disorders. However, few findings are available on the potential role of CRP in pulmonary arterial hypertension due to COPD. Methods: This study was performed prospectively and the study population was composed of 72 patients that were hospitalized due to AECOPD. After receiving acute management for AECOPD, serum CRP levels were evaluated, arterial oxygen pressure ($PaO_2$), was measured, and the existence of pulmonary arterial hypertension under room air inhalation was determined in the patients. Results: The number of patients with pulmonary arterial hypertension was 47 (65.3%)., There was an increased prevalence of pulmonary arterial hypertension and an increase of serum CRP levels in patients with the higher stages of COPD (e.g., patients with stage 3 and stage 4 disease; P<0.05). The mean serum CRP levels of patients with pulmonary arterial hypertension and without pulmonary arterial hypertension were $37.6{\pm}7.4mg/L$ and $19.9{\pm}6.6mg/L$, respectively (P<0.05). However, there was no significant difference of the mean values of $PaO_2$ between patients with pulmonary arterial hypertension and without pulmonary arterial hypertension statistically ($77.8{\pm}3.6mmHg$ versus $87.2{\pm}6.0mmHg). Conclusion: We conclude that higher serum levels of CRP can be a sign for pulmonary arterial hypertension in AECOPD patients.

Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats

  • Kim, Hae Jin;Yoo, Hae Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.641-647
    • /
    • 2016
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling of pulmonary arteries (PAs) and increased vascular resistance in the lung. Monocrotaline (MCT), a toxic alkaloid, is widely used for developing rat models of PAH caused by injury to pulmonary endothelial cells; however, characteristics of vascular functions in MCT-induced PAH vary and are not fully understood. Here, we investigated hypoxic pulmonary vasoconstriction (HPV) responses and effects of various vasoconstrictors with isolated/perfused lungs of MCT-induced PAH (PAH-MCT) rats. Using hematoxylin and eosin staining, we confirmed vascular remodeling (i.e., medial thickening of PA) and right ventricle hypertrophy in PAH-MCT rats. The basal pulmonary arterial pressure (PAP) and PAP increase by a raised flow rate (40 mL/min) were higher in the PAH-MCT than in the control rats. In addition, both high $K^+$ (40 mM KCl)- and angiotensin II-induced PAP increases were higher in the PAH-MCT than in the control rats. Surprisingly, application of a nitric oxide synthase inhibitor, L-$N^G$-Nitroarginine methyl ester (L-NAME), induced a marked PAP increase in the PAH-MCT rats, suggesting that endothelial functions were recovered in the three-week PAH-MCT rats. In addition, the medial thickening of the PA was similar to that in chronic hypoxia-induced PAH (PAH-CH) rats. However, the HPV response (i.e., PAP increased by acute hypoxia) was not affected in the MCT rats, whereas HPV disappeared in the PAH-CH rats. These results showed that vascular contractility and HPV remain robust in the MCT-induced PAH rat model with vascular remodeling.

Restenosis and Remodeling (관동맥성형술 후의 혈관 재협착 및 재형성)

  • Chae, Jei-Keon
    • 대한핵의학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.205-208
    • /
    • 1999
  • Percutaneous Transluminal Coronary Angioplasty (PTCA) remains limited by restenosis that occurs in 30 to 50% of patients with coronary artery disease. During the last decade, numerous agents have been used to prevent restenosis. Despite positive results in animal models, no pharmacological therapy has been found to significantly decrease the risk of restenosis in humans. These discrepancies between animal models and clinical situation were probably related to an incomplete understanding of the mechanism of restenosis. Neointimal thickening occurs in response to experimental arterial injury with a balloon catheter. Neointimal formation involves different steps: smooth muscle cell activation, proliferation and migration, and the production of extracellular matrix. The factors that control neointimal hyperplasia include growth factors, humoral factors and mechanical factors. Arterial remodeling also plays a major role in the restenosis process. Studies performed in animal and human subjects have established the potentials for "constrictive remodeling" to reduce the post-angioplasty vessel area, thereby indirectly narrowing the vessel lumen and thus contributing to restenosis. The reduction of restenosis rate in patients with intracoronary stent implantation has been attributed to the preventive effect of stent itself for this negative remodeling. In addition to these mochanisms for restenosis, intraluminal or intra-plaque thrombus formation, reendothelialization and apoptosis theories have been introduced and confirmed at least in part.

  • PDF

Folded-Loop Guidewire Remodeling Technique: Catheterizing Markedly Angulated Branches during Intravascular Embolization (Folded-Loop Guidewire Remodeling Technique: 색전술 시 급격한 분지 각도를 가지는 혈관의 선택적 진입 방법)

  • Dong Hyun Kim;Ung Rae Kang;Young Hwan Kim;Jung Guen Cha
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.2
    • /
    • pp.418-426
    • /
    • 2023
  • Purpose Practical challenges are encountered in percutaneous intravascular procedures when applied to markedly angulated branching vessels. Herein, we introduced a folded-loop guidewire remodeling technique-the guidewire-shaping technique-to overcome difficult catheterization. Materials and Methods First, the tip of a 0.014-inch micro-guidewire was manually shaped like a pigtail loop. Second, the shaped guidewire was introduced into the microcatheter and was preloaded into the hollow metal introducer for suitability with the microcatheter hub. Gentle rotation of the guidewire after release from the microcatheter can create the preshaped pigtail loop configuration. On pulling back, the loop loosened, the configuration was changed to a small U-shaped tip, and the guidewire tip was easily introduced into the target artery. Results Between December 2019 and January 2022, the described technique was used in 64 patients (male/female, 49/15; mean age, 66.8 ± 9.5 years) for selective arterial embolization, after failed attempts with the conventional selection technique. The technique was successful in 63/64 patients (98%). The indications of embolization include transcatheter arterial chemoembolization, gastrointestinal bleeding, hemoptysis, trauma-induced bleeding, and tumor bleeding. Conclusion The folded-loop guidewire remodeling technique facilitates the catheterization of markedly angulated branching arteries; when usual catheterization method fails.

Apelin-APJ Signaling: a Potential Therapeutic Target for Pulmonary Arterial Hypertension

  • Kim, Jongmin
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by the vascular remodeling of the pulmonary arterioles, including formation of plexiform and concentric lesions comprised of proliferative vascular cells. Clinically, PAH leads to increased pulmonary arterial pressure and subsequent right ventricular failure. Existing therapies have improved the outcome but mortality still remains exceedingly high. There is emerging evidence that the seven-transmembrane G-protein coupled receptor APJ and its cognate endogenous ligand apelin are important in the maintenance of pulmonary vascular homeostasis through the targeting of critical mediators, such as Kr$\ddot{u}$ppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and microRNAs (miRNAs). Disruption of this pathway plays a major part in the pathogenesis of PAH. Given its role in the maintenance of pulmonary vascular homeostasis, the apelin-APJ pathway is a potential target for PAH therapy. This review highlights the current state in the understanding of the apelin-APJ axis related to PAH and discusses the therapeutic potential of this signaling pathway as a novel paradigm of PAH therapy.

Vascular health late after Kawasaki disease: implications for accelerated atherosclerosis

  • Cheung, Yiu-Fai
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.11
    • /
    • pp.472-478
    • /
    • 2014
  • Kawasaki disease (KD), an acute vasculitis that primarily affects young children, is the most common acquired paediatric cardiovascular disease in developed countries. While sequelae of arterial inflammation in the acute phase of KD are well documented, its late effects on vascular health are increasingly unveiled. Late vascular dysfunction is characterized by structural alterations and functional impairment in term of arterial stiffening and endothelial dysfunction and shown to involve both coronary and systemic arteries. Further evidence suggests that continuous low grade inflammation and ongoing active remodeling of coronary arterial lesions occur late after acute illness and may play a role in structural and functional alterations of the arteries. Potential importance of genetic modulation on vascular health late after KD is implicated by associations between mannose binding lectin and inflammatory gene polymorphisms with severity of peripheral arterial stiffening and carotid intima-media thickening. The changes in cholesterol and lipoproteins levels late after KD further appear similar to those proposed to be atherogenic. While data on adverse vascular health are less controversial in patients with persistent or regressed coronary arterial aneurysms, data appear conflicting in individuals with no coronary arterial involvements or only transient coronary ectasia. Notwithstanding, concerns have been raised with regard to predisposition of KD in childhood to accelerated atherosclerosis in adulthood. Until further evidence-based data are available, however, it remains important to assess and monitor cardiovascular risk factors and to promote cardiovascular health in children with a history of KD in the long term.

Hemodynamic Stress Changes due to Compensatory Remodelling of Stenosed Coronary Artery (협착이 발생된 관상동맥의 보상적 재형성에 따른 혈류역학적 응력변화)

  • Cho, Min-Tae;Suh, Sang-Ho;Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.529-532
    • /
    • 2001
  • The purposes of the present study are to investigate hemodynamic characteristics and to define shear-sensitive remodeling in the stenosed coronary models. Two models for the compensatory remodelling used for this research are a pre-stenotic dilation and a post-stenotic dilation models for the computer simulation. The peak wall shear stress on the post-stenotic model is higher than that of the pre-stenotic model. Two recirculation zones are generated in the pre-stenotic model, and the zones in the pre-stenotic model are smaller than those in the post-stenotic model. Variation of the wall shear stress in the pre-stenotic model is lower than that in the post-stenotic model. In computer simulation with the post-stenotic model, higher temporal and spatial shear fluctuation and stress suggested shear-sensitive remodeling. Shear-sensitive remodeling may be associated with the increased risk of plaque rupture, the underlying cause of acute coronary syndromes, and sudden cardiac death.

  • PDF

Therapeutic implications of microRNAs in pulmonary arterial hypertension

  • Lee, Aram;McLean, Danielle;Choi, Jihea;Kang, Hyesoo;Chang, Woochul;Kim, Jongmin
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.311-317
    • /
    • 2014
  • microRNAs (miRNAs) are a class of small, non-coding RNAs that play critical posttranscriptional regulatory roles typically through targeting of the 3'-untranslated region of messenger RNA (mRNA). Mature miRNAs are known to be involved in global cellular processes, such as differentiation, proliferation, apoptosis, and organogenesis, due to their capacity to target multiple mRNAs. Thus, imbalances in the expression and/or activity of miRNAs are involved in the pathogenesis of numerous diseases, including pulmonary arterial hypertension (PAH). PAH is a progressive disease characterized by vascular remodeling due to excessive proliferation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). Recently, studies have evaluated the roles of miRNAs involved in the pathogenesis of PAH in these pulmonary vascular cells. This review provides an overview of recent discoveries on the role of miRNAs in the pathogenesis of PAH and discusses the potential for miRNAs as therapeutic targets and biomarkers of PAH.

Wogonin attenuates vascular remodeling by inhibiting smooth muscle cell proliferation and migration in hypertensive rat

  • Yang Yang;Shan Huang;Jun Wang;Xiao Nie;Ling Huang;Tianfa Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Wogonin, extracted from the roots of Scutellaria baicalensis Georgi, has been shown to suppress collagen deposition in spontaneously hypertensive rats (SHRs). This study was performed to investigate the role and mechanism of wogonin underlying vascular remodeling in SHRs. After injection of SHRs with 40 mg/kg of wogonin, blood pressure in rats was measured once a week. Masson's trichrome staining was conducted to observe the changes in aortas and mesenteric arteries. Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were treated with Angiotensin II (Ang II; 100 nM) in the presence or absence of varying concentrations of wogonin. The viability and proliferation of VSMCs were examined using Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, respectively. The migration of VSMCs was examined using wound healing assay and transwell assay. We found that wogonin administration alleviated hypertension, increased lumen diameter, and reduced the thickness of the arterial media in SHRs. Ang II treatment enhanced the viability of VSMCs, which was inhibited by wogonin in a concentration-dependent manner. Wogonin reversed Ang II-induced increases in the viability, proliferation, and migration of VSMCs. Moreover, wogonin inhibited Ang II-induced activation of mitogen-activated protein kinase (MAPK) signaling in VSMCs. Overall, wogonin repressed the proliferative and migratory capacity of VSMCs by regulating the MAPK signaling pathway, thereby attenuating vascular remodeling in hypertensive rats, indicating that wogonin might be a therapeutic agent for the treatment of vascular diseases.

A Morphologic Study on the Effect of the Vascular Endothelial Growth Factor in the Anastomosis of the Rat Femoral Artery (쥐에서 대퇴 동맥 문합술시 투여한 혈관내피성장인자의 효과에 대한 형태학적 연구)

  • Lee, Jun-Mo;Lee, Young-Keun
    • Archives of Reconstructive Microsurgery
    • /
    • v.13 no.2
    • /
    • pp.101-106
    • /
    • 2004
  • Purpose : This study evaluated the effect of VEGF in the arterial anastomosis by using light and electron microscopy. Marerials and method : Rats underwent femoral arterial end-to-end anastomosis after transection and topical VEGF treatment. The proximal and distal segments of the femoral arteries was drenched with 1 drop of VEGF $(100ng/100{\mu}l/bottle)$. and when half of the repair was finished, the other 1 drop was drenched and then the repair was continued to complete the anastomosis. Gross and histologic characteristics of arterial wall were assessed after 3 days, 1, 3 and 5 weeks. In the control group, normal saline solution instead of VEGF was dropped with the same method in the anastomosis. Results : The histologic findings of the arterial wall were the vascular remodeling with the infiltration of inflammatory cells at early stages and the tissue fibrosis at lately stages in the anastomotic sites of the control and the VEGF-treated groups. The scanning electron microscopic results were; (1) the anastomotic sites were covered by many irregular cells with long cytoplasmic processes at the early stages. (2) After 1 week, endothelial cells started to cover the anastomotic sites. (3) After 3 weeks, the anastomotic sites were partially covered by endothelial cells in the control group. (4) After 5 weeks, the anastomotic sites were completely covered by endothelial cells in the control and VEGF-treated groups. (5) In the VEGF-treated group, the anastomotic site was completely covered by endothelial cells which directed parallel to longitudinal axis of arteries after 3 weeks. Conclusion : Topical VEGF maintained luminal integrity by decreasing fibrosis and increasing re-endothelialization. These findings suggest that topical VEGF may be a promising new strategy to enhance healing and improve the outcome of vascular anastomosis.

  • PDF