• Title/Summary/Keyword: Arsenite

Search Result 99, Processing Time 0.032 seconds

The Effect of Sodium Arsenite ($NaAsO_2$) on the Proliferation and Differentiation of Bone Marrow Cell Stimulated by G-CSF to Neutrophilic Granulocyte Lineage Cells (Sodium Arsenite ($NaAsO_2$)가 G-CSF에 의해 neutrophilic granulocyte계열 세포로 성장, 분화가 촉진된 골수 세포에 미치는 영향)

  • 한성수;박재현;정혜주;김영옥;정승태;김진호;최경백;강선경;조대현
    • Toxicological Research
    • /
    • v.16 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • To investigate what kinds effect arsenic exert on the proliferation and differentiation of bone marrow cells to the neutrophilic granulocytes lineage cells, we treated sodium arsenite to murine bone marrow cells without or with the stimulation of G-CSF. When we added the various concentrations oj sodium arsenite to bone marrow cells without the stimulation of G-CSF for I, 3, 5 or 7 days, sodium arsenite did not make an any effect up to 2.5 $\mu\textrm{M}$$\mu\textrm{M}$$\mu\textrm{M}$$\mu\textrm{M}$$\mu\textrm{M}$$m\ell$ of G-CSF was induced by the co treatment of 12.5 $\mu\textrm{M}$

  • PDF

Effect of Antioxidants on Arsenite Exposed Porcine Embryonic Development

  • Kim, Han-Su;Lee, Yu-Sub;Lee, Sang-Hee;Cheong, Hee-Tae;Park, Choon-Keun;Lee, Seunghyung;Yang, Boo-Keun
    • Biomedical Science Letters
    • /
    • v.23 no.1
    • /
    • pp.25-29
    • /
    • 2017
  • This study was to investigate the role of antioxidants on development in arsenite exposed porcine embryos. Oocytes were collected from porcine ovary, and then matured for 44 h. Maturated oocytes were incubated with sperm for 6 h, and fertilized oocytes with sperm (embryos) cultured for 48 h. After, embryos were culture with arsenite and/or antioxidants (melatonin, silymarin, curcumin and vitamin) for 120 h. Formation of pre-morulae, morulae and blastosysts rate was measured using microscope. In results, 10, 100 and 100 nM arsenite significantly decreased morulae and blastocysts formation compared to control in pigs (P<0.05). $10{\mu}M$ silymarin and $100{\mu}M$ vitamin E increased blastocyst formation compared to 10 nM arsenite exposed embryos, but there were no significantly among the treatment, and 1 nM melatonin and $5{\mu}M$ curcumin did not influence blastocysts formation in 10 nM arsenite exposed embryos. In summary, arsenite decreased embryo development, $10{\mu}M$ silymarin, $100{\mu}M$ vitamin E, 1 nM melatonin and $5{\mu}M$ curcumin had no positive effect to blastocyst formation in arsenite exposed porcine embryos. Therefore, we suggest that little arsenite may have negative effect to embryo development, and silymarin, vitamin E, melatonin and curcumin could not rescue embryo development from damage by arsenite in pigs.

Effect of Arsenic Treatment and Pretreatment in Rat Liver Tissue (흰쥐 간조직에서의 비소처리 영향 및 비소 전처리 효과)

  • Ro, Mi-Kyeong;Sohn, Seong-Hyang;Boo, Moon-Jong;Kim, Ok-Yong
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.78-85
    • /
    • 1994
  • Sodium arsenite ($NaAsO_2$) was injected to the rat subcutaneously for the study of the acute toxicity of arsenite on hepatocytes, and the effects of pretreatment of arsenite and glutathione on the lethalty of the arsenite treated rats. Arsenite treated rat hepatocytes showed vacuolated cytosol and shrinked nuclear and expanded perinuclear space and cytoplasmic membrane whirl. Rats pretreated with BSO (L-Buthionine-SR-Sulfoximine), less survived than arsenite treated alone. It means that glutathione acts as a protecting agent against the arsenite. Subcutaneous sublethal dose (10mg/kg body weight) treatment was showed the protecting activity to lethality of lethal dose (15mg/kg body weight) treated rat. 10mg/kg body weight sublethal dose effects appeared in six hours intervals of between treatments.

  • PDF

Effects of Arsenite and Antioxidants on Sperm Motility, Plasma Membrane Integrity, Mitochondrial Activity, and Lipid Peroxidation in Pigs (돼지정자의 운동성, 원형질막 온전성, 미토콘드리아 기능성 및 원형질막 지질과산화에 미치는 arsenite 및 항산화제의 영향)

  • Kim, Han-Su;Lee, Yu-Sub;Lee, Sang-Hee;Cheong, Hee-Tae;Park, Choon-Keun;Lee, Seunghyung;Yang, Boo-Keun
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.517-523
    • /
    • 2017
  • This study was to investigate the role of antioxidants on the characteristics of arsenite-damaged boar semen. Collected sperm was diluted with semen extender, and $100{\mu}M$ arsenite was used for sperm damage. Then melatonin, silymarin, curcumin, and vitamin E were applied for 3, 6, and 9 hr in arsenite-treated boar sperm. Sperm characteristics were then analyzed for motility, plasma membrane integrity, mitochondrial activity, and lipid peroxidation. In the results, sperm motility (control, $77.3{\pm}1.8%$) was decreased by arsenite ($33.3{\pm}1.5%$), while the antioxidant treatment groups (100 nM melatonin, $55.8{\pm}3.4%$; $2{\mu}M$ silymarin, $48.8{pm}3.4%$; $10{\mu}M$ curcumin, $53.9{\pm}2.8%$; and $500{\mu}M$ vitamin E, $54.5{\pm}3.1%$) showed increases compared to the arsenite group (p<0.05). $100{\mu}M$ arsenite decreased the sperm plasma membrane integrity ($24.5{\pm}1.6%$) and mitochondrial activity ($58.2{\pm}2.6%$), and increased lipid peroxidation ($5.3{\pm}0.2%$) at 3 hr (p<0.05). However, arsenite-treated samples with 100 nM melatonin, $2{\mu}M$ silymarin, $10{\mu}M$ curcumin, and $500{\mu}M$ vitamin E increased the plasma membrane integrity and mitochondria activity, and decreased lipid peroxidation compared to the arsenite-treated samples. In summary, arsenite may induce sperm damage and oxidation stress, while antioxidants such as melatonin, silymarin, curcumin, and vitamin E are useful for maintaining sperm characteristics. Therefore, antioxidants can protect sperm against damage by arsenite in fresh boar semen.

Regulation of NO from Endothelial Cells by the Decrease of Cellular cAMP Under Arsenite Exposure

  • Lee, Soo-Youn;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.392-395
    • /
    • 2008
  • In an attempt to delineate the direct effect of arsenite-induced endothelial dysfunction on nitric oxide (NO) production, confluent bovine aortic endothelial cells (BAEC) were incubated with arsenite, and endothelial NO synthase expression and NO production were measured. Exposure of arsenite decreased NO production for up to 24h. This decrease was accompanied by decreases in cAMP, protein kinase A (PKA) activity, and furthermore, significant reduction of pCREB. In conclusion, this study is the first to demonstrate that exposure of arsenite decreases NO production by a reduction of pCREB and PKA activity that may be mediated by cAMP, leading to endothelial dysfunction.

Arsenite induces premature senescence via p53/p21 pathway as a result of DNA damage in human malignant glioblastoma cells

  • Ninomiya, Yasuharu;Cui, Xing;Yasuda, Takeshi;Wang, Bing;Yu, Dong;Sekine-Suzuki, Emiko;Nenoi, Mitsuru
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.575-580
    • /
    • 2014
  • In this study, we investigate whether arsenite-induced DNA damage leads to p53-dependent premature senescence using human glioblastoma cells with p53-wild type (U87MG-neo) and p53 deficient (U87MG-E6). A dose dependent relationship between arsenite and reduced cell growth is demonstrated, as well as induced ${\gamma}H2AX$ foci formation in both U87MG-neo and U87MG-E6 cells at low concentrations of arsenite. Senescence was induced by arsenite with senescence-associated ${\beta}$-galactosidase staining. Dimethyl- and trimethyl-lysine 9 of histone H3 (H3DMK9 and H3TMK9) foci formation was accompanied by p21 accumulation only in U87MG-neo but not in U87MG-E6 cells. This suggests that arsenite induces premature senescence as a result of DNA damage with heterochromatin forming through a p53/p21 dependent pathway. p21 and p53 siRNA consistently decreased H3TMK9 foci formation in U87M G-neo but not in U87MG-E6 cells after arsenite treatment. Taken together, arsenite reduces cell growth independently of p53 and induces premature senescence via p53/p21-dependent pathway following DNA damage.

Effect of Arsenic on Acetylcholine-Induced Relaxation in Blood Vessels in vitro cad in vivo

  • Lee, M.Y.;Chung, S.M.;Bae, O.N.;Chung, J.H.
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.137-137
    • /
    • 2002
  • Several epidemiologidal studies suggested that arsenic exposure was strongly correlated with the development of cardiovascular disease such as hypertension. In order to examine whether arsenic affects vasomotor tone in blood vessels, we investigated the effect of arsenic on agonist-induced vasorelaxation using the isolated rat aortic ring in in vitro organ bath system. Treatment with arsenite inhibited acetylcholine-induced relaxation of aortic rings in a concentration- dependent manner. The inhibitory effects by arsenic were also observed in the relaxation induced by sodium nitroprusside, a NO-donor. Consistent with these findings, the cGMP levels stimulated by acetylcholine in blood vessels were reduced significantly by arsenite treatment. In addition, higher concentration of arsenite decreased the relaxation by 8-Br-cGMP, a cGMP analog, in aortic rings without endothelium. These in vitro results indicated that arsenite that arsenite was capable of suppressing acetylcholine-induced relaxation in blood vessels by inhibiting production of nitric oxide in endothelial cells and by impairing the relaxation machinary in smooth muscle cells. In vivo studies revealed that the reduction of blood pressure by acetylcholine infusion was signigicantly suppressed after arsenite was administered intravenously to rate. These data suggest that vasomotor tone impaired by arsenite exposure may be one of the contrbuting factors in development of cardiovascular disease.

  • PDF

Transcription Profiles of Human Cells in Response to Sodium Arsenite Exposure

  • Lee, Te-Chang;Konan Peck;Yih, Ling-Huei
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.59-69
    • /
    • 2001
  • Arsenic exposure is associated with several human diseases, including cancers, atherosclerosis, hypertension, and cerebrovascular diseases. In cultured cells, arsenite, an inorganic arsenic com-pound, was demonstrated to interfere with many physiological functions, such as enhancement of oxidative stress, delay of cell cycle progression, and induction of structural and numerical changes of chromosomes. The objective of this study is to investigate the effects of arsenic exposure on gene expression profiles by colorimetric cDNA microarray technique. HFW (normal human diploid skin fibroblasts), CL3 (human lung adenocarcinoma cell line), and HaCaT (immortalized human keratinocyte cell line) were treated with 5 $\mu\textrm{M}$ or 10 $\mu\textrm{M}$ sodium arsenite for 6 or 16 h, respectively. By a dual-color detection system, the expression profile of arsenite-treated cultures was compared to that of control cultures. Several genes expressed differentially were identified on the microarray membranes. For example, MDM2, SWI/SNF, ubiquitin specific protease 4, MAP3K11, RecQ protein-like 5, and Ribosomal protein Ll0a were consistently induced in all three cell types by arsenite, whereas prohibitin, cyclin D1, nucleolar protein 1, PCNA, Nm23, and immediate early protein (ETR101) were apparently inhibited. The present results suggest that arsenite insults altered the expression of several genes participating in cellular responses to DNA damage, stress, transcription, and cell cycle arrest.

  • PDF

Effects of arsenite and variation of microbial community on continuous bio-hydrogen production from molasses using a sequence batch reactor (SBR)

  • William, Dennis Sambai;Lee, Pul-eip;Lee, Tae-jin
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.370-376
    • /
    • 2015
  • This study investigated the effects of various arsenite concentrations on bio-hydrogen production from molasses using a sequence batch reactor (SBR) operated in a series of three batch cycles. In the first batch cycle, hydrogen production was stimulated at arsenite concentrations lower than 2.0 mg/L, while inhibition occurred at arsenite concentration higher than 2.0 mg/L compared to the control. Hydrogen production decreased substantially during the second batch cycle, while no hydrogen was produced during the third batch cycle at all tested concentrations. The toxic density increased with respect to the increase in arsenite concentrations (6.0 > 1.6 > 1.0 > 0.5 mg/L) and operation cycles (third cycle > second cycle > first cycle). The presence of microorganisms such as Clostridium sp. MSTE9, Uncultured Dysgonomonas sp. clone MEC-4, Pseudomonas parafulva FS04, and Uncultured bacterium clone 584CL3e9 resulted in active stimulation of hydrogen production, however, it was unlikely that Enterobacter sp. sed221 was not related to hydrogen production. The tolerance of arsenite in hydrogen producing microorganisms decreased with the increase in induction time, which resulted in severing the inhibition of continuous hydrogen production.

Arsenite Acutely Decreases Nitric Oxide Production via the ROS-Protein Phosphatase 1-Endothelial Nitric Oxide Synthase-Thr497 Signaling Cascade

  • Seo, Jungwon;Lee, Jee Young;Sung, Min-Sun;Byun, Catherine Jeonghae;Cho, Du-Hyong;Lee, Hyeon-Ju;Park, Jung-Hyun;Cho, Ho-Seong;Cho, Sung-Jin;Jo, Inho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.510-518
    • /
    • 2014
  • Chronic (>24 h) exposure of arsenite, an environmental toxicant, has shown the decreased nitric oxide (NO) production in endothelial cells (EC) by decreasing endothelial NO synthase (eNOS) expression and/or its phosphorylation at serine 1179 ($eNOS-Ser^{1179}$ in bovine sequence), which is associated with increased risk of vascular diseases. Here, we investigated the acute (<24 h) effect of arsenite on NO production using bovine aortic EC (BAEC). Arsenite acutely increased the phosphorylation of $eNOS-Thr^{497}$, but not of $eNOS-Ser^{116}$ or $eNOS-Ser^{1179}$, which was accompanied by decreased NO production. The level of eNOS expression was unaltered under this condition. Treatment with arsenite also induced reactive oxygen species (ROS) production, and pretreatment with a ROS scavenger N-acetyl-L-cysteine (NAC) completely reversed the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Although protein kinase C (PKC) and protein phosphatase 1 (PP1) were reported to be involved in $eNOS-Thr^{497}$ phosphorylation, treatment with PKC inhibitor, Ro318425, and overexpression of various PKC isoforms did not affect the arsenite-stimulated $eNOS-Thr^{497}$ phosphorylation. In contrast, treatment with PP1 inhibitor, calyculin A, mimicked the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Lastly, we found decreased cellular PP1 activity in arsenite-treated cells, which was reversed by NAC. Overall, our study demonstrates firstly that arsenite acutely decreases NO production at least in part by increasing $eNOS-Thr^{497}$ phosphorylation via ROS-PP1 signaling pathway, which provide the molecular mechanism underlying arsenite-induced increase in vascular disease.