• 제목/요약/키워드: Arsenic (As)

검색결과 882건 처리시간 0.03초

울산지역 지하수중 비소의 산출 및 존재형태 (Occurrence and Species of Arsenic in the Groundwater of Ulsan Area)

  • 윤욱;조병욱;성규열
    • 자원환경지질
    • /
    • 제37권6호
    • /
    • pp.657-667
    • /
    • 2004
  • 울산광역시 46개 지하수 시료 중 29개 시료에서 비소가 검출되었고, 그 농도는 $<0.1-7.2{\mu}g/L$의 범위를 나타낸다. 그 중 3개의 지하수에서 국내음용수 기준치$(50{\mu}g/L)$를 초과하였고, 10째 시료에서는 세계보건기구 기준치인 $(10{\mu}g/L)$를 초과하고 있음이 이번 연구에서 밝혀졌다. 비소의 농도가 높은 곳은 지질구조선 부근 특히 과거 울산철광 부근인 달천리 일대와 정자역암이 분포하는 효문동 일대이다. 울산철광 부근은 주로 황철석이 산화된 형태로 산화환경을 보이나, 효문동 일대는 환원상태의 FeOOH의 산화에서 야기되는 것으로 해석된다. pH-Eh 도표에 따른 연구지역 지하수중 비소의 존재형태는 달천리 일대에서는 As(V)로 $H_2AsO_4^-,\;HAsO4_^{-2}$로 존재한다. 효문리등 구조선일대는 As(III)로 $H_3AsO_3$ 형태로 존재한다.

환경 오염물질 비소의 체내 대사 및 인체 위해성 (Potential Risk to Human Health by Arsenic and Its Metabolite)

  • 배옥남;이무열;정승민;하지혜;정진호
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권1호
    • /
    • pp.1-11
    • /
    • 2006
  • Arsenic is a ubiquitous element found in several forms in environment. Although certain foods, such as marine fish, contain substantial levels of organic arsenic forms, they are relatively low in toxicity compared to inorganic forms. In contrast, arsenic in drinking water is predominantly inorganic and very toxic. Chronic ingestion of arsenic-contaminated drinking water is therefore the major pathway posing potential risk to human health. World populations are exposed to low to moderate levels of arsenic of parts per billion (ppb) to thousands of ppb. When exposed to human, it could metabolize into monomethylarsonous acid ($MMA^{III}$) and dimethylarsinous acid ($DMA^{III}$) which are highly toxic. Lots of stuides have been recently focused how $MMA^{III}\;and\;DMA^{III}$ induce toxic insults in various target tissues. Epidemiological studies revealed that chronic arsenic exposure caused cancer, cardiovascular diseases, and diabetes etc. In this review, the current understanding of arsenic on health effects will be discussed.

Pre-Red Mud 및 Bio-Solids의 토양 안정화제 활용 가능성에 대한 연구 (A Study on Pre-Red Mud and Bio-Solids Applicability as Soil Stabilizer)

  • 양주경;강선홍
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.419-428
    • /
    • 2011
  • Recycling as a stabilizer of industrial by-product can be terms of the proper handling of industrial by-product and positive side in terms of recycling of waste. This study was performed to evaluate has the possibility as stabilizer by primary processing Pre-Red Mud and Bio-Solids which are generated as waste in soils contaminated with heavy metals and compared the efficiency with steel slug being applied in an existing site. In evaluation of the arsenic-fixing ability of stabilizer in batch test, Bio-Solids have the similar arsenic-fixing ability with Pre-Red Mud, which shows 17% h igher arsenic-fixing ability than PS Ball. Since the stabilization periods using Bio-Solids and Pre-Red Mud are faster than the PS Ball, they seems to be better stabilizer than PS Ball to decrease the leaching of arsenic in contaiminated soil.

한국인의 체내 비소오염도 조사 연구 (Distribution of Arsenic in Korean Human Tissues)

  • 이상기;양자열;김기욱;이수연;권태정;유영찬
    • Environmental Analysis Health and Toxicology
    • /
    • 제18권2호
    • /
    • pp.101-109
    • /
    • 2003
  • Humans are exposed to toxic element arsenic (As) from air, food and water The current study was performed to investigate the levels of arsenic in the internal organs (liver, kidney cortex, lung, cerebrum. abdominal muscle and abdominal skin) and to find out correlation with age and interrelationship between tissues in Korean human bodies who had lived in Seoul or Gyeonggi Province and Honam district. The tissues from 43 Korean cadavers were digested with microwave digestion system and arsenic was determined by inductively coupled plasma mass spectrometer (ICP-MS). The mean recovery percentages of arsenic In liver were about 80% and artenic concentrations in human tissues were almost uniform. The mean level of arsenic in internal tissues were at follow ; liver 44.556${\pm}$25.199 ppb, kidney cortex 42.652${\pm}$22.082 pub, lung 31.020 ${\pm}$ 17.504 ppb. cerebrum 35.703 ${\pm}$22.191 ppb, muscle 43.413${\pm}$26.619 ppb and skin 42.106${\pm}$25.8,11 ppb. No significant difference was found in the levels of arsenic between sexes. Meanwhile significant differences between districts where they had lived were found in all tissues tested. The levels of arsenic in the tissues of cadavers who had lived in Seoul Gyeonggi Province were higher than those of Honam district. In addition a positive correlation between As concentration and age was observed only in the cerebrum (p < 0.05). A significantly high correlations between tissues were observed in all tissues tested. This result also shows that the distribution of arsenic is uniform in internal tissues.

Determination of Optimum Coagulants (Ferric Chloride and Alum) for Arsenic and Turbidity Removal by Coagulation

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Jung, Yoo-Jin
    • 한국환경과학회지
    • /
    • 제19권8호
    • /
    • pp.931-940
    • /
    • 2010
  • The Raw water from Deer Creek (DC) reservoir and Little Cottonwood Creek (LCC) reservoir in the Utah, USA were collected for jar test experiments. This study examined the removal of arsenic and turbidity by means of coagulation and flocculation processes using of aluminum sulfate and ferric chloride as coagulants for 13 jar tests. The jar tests were performed to determine the optimal pH range, alum concentration, ferric chloride concentration and polymer concentration for arsenic and turbidity removal. The results showed that a comparison was made between alum and ferric chloride as coagulant. Removal efficiency of arsenic and turbidity for alum (16 mg/L) of up to 79.6% and 90.3% at pH 6.5 respectively were observed. Removal efficiency of arsenic and turbidity for ferric chloride (8 mg/L) of up to 59.5% at pH 8 and 90.6% at pH 8 respectively were observed. Optimum arsenic and turbidity removal for alum dosages were achieved with a 25 mg/L and 16 mg/L respectively. Optimum arsenic and turbidity removal for ferric chloride dosages were achieved with a 20 mg/Land 8 mg/L respectively. In terms of minimizing the arsenic and turbidity levels, the optimum pH ranges were 6.5 and 8for alum and ferric chloride respectively. When a dosage of 2 mg/L of potassium permanganate and 8 mg/L of ferric chloride were employed, potassium permanganate can improve arsenic removal, but not turbidity removal.

공단지역주민의 요중 비소농도와 혈압과의 관련성에 관한 연구 (Association Between Blood Pressure and Urinary Arsenic Concentration in Industrial Areas)

  • 박희진;우경숙;문찬석;김근배;강택신;정은경;김용배;손부순
    • 한국산업보건학회지
    • /
    • 제24권2호
    • /
    • pp.137-145
    • /
    • 2014
  • Objectives: The study examines the relation between urinary arsenic concentration and blood pressure, which is a risk factor of cardiovascular disease. Materials: In this study, the urinary arsenic concentration, history of diagnosed disease, and blood pressure of 782 local residents in Gwangyang, Yeosu, and Hadong regions from May 2007 to July 2007. Results: The urinary arsenic concentration of total participants was $9.06{\mu}g/g-ct$. The logistic regression analysis of medical diagnosed history and urinary arsenic concentration, showed statistically significance (p<0.05) of high urinary arsenic concentration in participants with diagnosed hypertension. In addition, diagnosed hypertension it was observed that the high blood pressure was related with the pulse pressure. Conclusions: The arsenic concentration level was low in this study, but the exposure to low levels of arsenic has an effect on hypertension. Also, hypertension is related to pulse pressure and mean arterial blood pressure as well as being risk factor of cardiovascular disease. Therefore, close supervision of low -level arsenic exposure is needed.

Leaching of Arsenic in Soils Amended with Crushed Arsenopyrite Rock

  • Lee, Kyosuk;Shim, Hoyoung;Lee, Dongsung;Yang, Jae E.;Chung, Dougyoung
    • 한국토양비료학회지
    • /
    • 제47권2호
    • /
    • pp.113-119
    • /
    • 2014
  • Arsenic and its compounds which is one of the most toxic elements that can be found naturally on earth in small concentrations are used in the production of pesticides, herbicides, and insecticides. Most arsenic that cannot be mobilized easily when it is immobile is also found in conjunction with sulfur in minerals such as arsenopyrite (AsFeS), realgar, orpiment and enargite. In this investigation we observed the leaching of arsenic in soils amended with several levels of gravel size of arsenopyrite collected from a road construction site. Soil and gravel size of arsenopyrite were characterized by chemical and mineralogical analyses. Results of XRF analysis of arsenopyrite indicated that the proportion of arsenate was 0.075% (wt $wt^{-1}$) while the maximum amount of arsenic in soil samples was 251.3 mg $kg^{-1}$. Cumulative amounts of effluent collected from the bottom of the soil column for different mixing rate of the gravel were gradually increased where proportion of the gravel mixed was greater than 70% whereas the effluent was stabilized to the maximum after approximately 45 pore volumes of effluent or greater were collected. The arsenic in the effluent was recovered from the soil columns in which the proportion of arsenopyrite gravel was 60% or greater. The total amount of arsenic recovered as effluent was increased with increasing proportion of gravel in a soil, indicating that the arsenic in the effluent was closely related with gravel fraction of arsenopyrite.

알칼리 용출법에 의한 폐광산 광미중의 비소제거에 관한 연구 (Removal of Arsenic From Closed Mine Tailings by Alkali-Leaching Method)

  • 이재령;오종기;이화영;김성규;박재구
    • 한국토양환경학회지
    • /
    • 제2권2호
    • /
    • pp.73-79
    • /
    • 1997
  • 알칼리용출법을 사용하여 폐광산 광미로부터 비소성분을 제거하기 위한 실험을 실시하였다. 대상시료는 오래전에 폐광된 폐광산인 다덕광산 및 유천광산에서 채취한 광미를 사용하였으며, 알칼리용출액으로는 가성소다 수용액을 사용하였다. 알칼리용출후 용액중의 비소 성분은 칼슘비소화합물 형태의 불용성 침전물로 전환시키는 방법으로 제거할수 있었다. 실험결과 침출조건에 따라 약 60∼90%의 비소침출율을 달성할 수 있었으며, 0.5N이상의 가성소다 농도에서는 침출율에 대한 온도 및 슬러리 농도의 영향이 매우 작은 것으로 나타났다 또한, 1회 용출시 소모되는 알칼리 양이 별로 크지 않기 때문에 0.5N이상의 가성소다 용액을 사용할 경우 용출액 재사용이 가능한 것으로 나타났다. 한편, 비소 침전실험 결과 침출액에 대하여 2wt% 염화칼슘을 첨가함으로써 침전시간 10분이내에 99%이상의 비소 침전율을 얻을 수 있었다.

  • PDF

비소화합물에 의한 A549 폐암세포의 증식억제에 관한 연구 (Effects of Arsenic Compounds $(AS_2O_3\;and\;AS_4O_6)$ on the Induction of Apoptotic Cell Death in A549 Human Non-small Cell Lung Cancer Cells)

  • 최영현;최우영;최병태;이용태;이원호
    • 동의생리병리학회지
    • /
    • 제19권4호
    • /
    • pp.1050-1054
    • /
    • 2005
  • Recently, arsenic compounds were considered as novel agents for treatment of acute promyelocytic leukemia and malignant tumors. However, it showed severe toxicity effect on normal tissue at the same time. In this study, to investigate the possible molecular mechanism (s) of arsenic compounds as candidate of anti-cancer drugs, we compared the abilities of two arsenic compounds, tetraarsenic oxide $(AS_4O_6)$ and arsenic trioxide (diarsenic oxide, $As_2O_3$), to induce cell growth inhibition as well as apoptosis induction in A549 human non-small cell lung cancer cells. Both $As_4O_6\;and\;As_2O_3$ treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of G1 arrest of the cell cycle and apoptotic cell death. However, $As_4O_6$ induced growth inhibition and apoptosis in A549 cells at much lower concentrations than $As_2O_3.\;As_4O_6$ down-regulated the levels of anti-apoptotic Bcl-2 protein, however, the levels of Bax, a pro-apoptotic protein, were up-regulated in a dose-dependent manner. In conclusion, $As_4O_6$ might be a new arsenic compound which may induce apoptosis in A549 cells by modulation the Bcl-2 family and deserves further evaluation.

비소의 적철석 표면 흡착에 토양유기물이 미치는 영향: 화학종 모델링과 흡착 기작 (Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism)

  • 고일원;김주용;김경웅;안주성
    • 자원환경지질
    • /
    • 제38권1호
    • /
    • pp.23-31
    • /
    • 2005
  • 본 연구는 이성분계의 화학종 모델링과 삼성분계의 흡착 모델링으로부터 As(III)와 As(V)의 적철석 표면 흡착에 휴 믹산의 영향과 그 결합기작을 고찰하였다. 비소와 휴믹산의 유기 결합의 모델링은 음이온 사이의 정전기적인 반발력 과 비소의 유기 결합을 위한 결합금속의 영향을 고려한 결합 모델이 적합하였다. 삼성분계의 흡착 실험 자료와 비교 할 때 이성분계의 고유상수를 사용한 음이온 경쟁 모델이 음이온 경쟁에 따른 비소의 흡착량과 일치하였다. 반면, 비 소의 유기 결합량의 감소와 휴믹산과의 음이온 흡착경쟁이 흡착량을 감소시키기 때문에 단순합모델은 양이온 중금속 과는 반대로 모델의 편차를 보였다. 반응 기작의 관점에서 휴믹산의 공존하에 비소 유기결합 화학종과 중성화학종의 As(III) 및 음이온의 As(V)가 속착물을 형성하며, 경쟁적으로 적철석 표면으로 이동하여 흡착하게 된다.