• 제목/요약/키워드: Arsenic, BCF

검색결과 6건 처리시간 0.019초

Identification of Transition Characteristics and Bio-concentration Factors of Heavy Metal (loid)s in the Selected Perennial Root Medicinal Plants

  • Kim, Won-Il;Noh, Hyun Myung;Hong, Chang-Oh;Kim, Da-Young;Kim, Kwon-Rae;Oh, Kyeong-Seok;Moon, Byeong-Churl;Kim, Ji-Young
    • 한국토양비료학회지
    • /
    • 제50권4호
    • /
    • pp.251-258
    • /
    • 2017
  • This study was conducted to identify transition characteristics of arsenic (As), cadmium (Cd), and lead (Pb) and to calculate bio-concentration factors (BCF) in the three perennial root medicinal plants, namely Codonopsis lanceolata (Deoduck), Platycodon grandiflorum (Balloon flower) and Panax ginseng (Korean ginseng) grown in major medicinal plant producing districts in Korea. Average BCF values ranged from 0.009~0.029 in As, 0.334~1.453 in Cd, and 0.021~0.023 in Pb in three perennial root medicinal plants. The BCF values increased in the order of ginseng (0.029) > deodeok (0.012) > balloon flower (0.009) for As, balloon flower (1.453) > deodeok (0.685) > ginseng (0.334) for Cd, and ginseng (0.023) > deodeok (0.022) > balloon flower (0.021) for Pb. The BCF values calculated in this study will be useful for predicting the uptake of heavy metal (loid)s. Further study on uptake and accumulation mechanism of toxic metal (loid)s by agricultural products is required to assess the human health risk associated with soil contamination.

장항 송림 비소오염토양의 식물재배정화를 위한 식물종 선정 (Selection of Plant Species for Phytoremediation of Arsenic Contaminated Sandy Soil in a Pine Forest at Janghang, Korea)

  • 배범한;김영훈
    • Ecology and Resilient Infrastructure
    • /
    • 제11권3호
    • /
    • pp.65-77
    • /
    • 2024
  • 장항 송림 비소오염토양의 식물재배정화법에 적합한 식물종 선별을 위한 일련의 화분 실험을 수행하였다. 식물종은 비소를 흡수/제거할 수 있는 자생식물로, 송림의 타감작용, 사토 및 반양지의 환경 조건에서 생장가능해야 한다. 총 11종의 식물을 송림토양을 넣은 화분에 정식하고 온실에서 3개월 재배하고, 비소축적, 생체량 및 bioconcentration factor (BCF) 및 비소제거량을 측정하였다. 수크령이 지상부에 111.95 mg/kg의 비소를 축적하였고, 송엽국은 BCF가 3.52이었고, 고생체량 식물인 송엽국과 인동덩굴은 지상부에 각각 8.49 mg/kg 및 2.87 mg/kg의 비소를 축적하였다. 비소 흡수 증진을 위해 선정한 3종 식물의 화분에 oxalate를 1개월간 10, 20 및 40 mmol/kg-soil의 비율로 분할 주입하였다. 그 결과, 식물 생장 및 토양 미생물 활성에는 영향을 주지 않았으며, 40 mmol/kg-soil에서 수크령의 지하부 비소 농도가 유의하게(p<0.05) 증가하였다.

Ameliorating Effect of Selenium against Arsenic Induced Male Reproductive Toxicity in Rats

  • Jalaludeen, Abdulkadhar Mohamed;Lee, Ran;Lee, Won Young;Kim, Dong Hoon;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • 제38권3호
    • /
    • pp.107-114
    • /
    • 2014
  • Oral exposure of humans by excess amounts of arsenic may cause disturbances of the reproductive system. In the present study, such exposure was modelled in rats, with the support of sperm principal parameters and histopathological observations. Male Sprague-Dawley rats were randomly divided into three groups where the group I was served as a normal control, group II was received sodium meta-arsenite as arsenic (10 mg/kg b.w/day) and a combination of sodium meta-arsenite and sodium selenite (3 mg/kg b.w/day) in group III. After 6 weeks, there was no significant change in testis weight and in total motility of all the three experimental groups, whereas, rapid moving spermatozoa, moderately moving spermatozoa and slow moving spermatozoa were significantly decreased in arsenic treated rats as compared to control rats. The other sperm principal parameters like progressiveness, average path velocity, straightness linear velocity (VSL), curvilinear velocity (VCL), straightness, linearity sperm head elongation ratio, area, linearity amplitude of lateral head department (ALH) and beat cross frequency (BCF) were found to be reduced in arsenic intoxicated rats. These results are not correlated with the histological studies. On oral administration of selenium ameliorated the adverse effects of arsenic as compared to arsenic alone treated rats. Our findings clearly demonstrate that administration of selenium could prevent some of the deleterious effects of arsenic in the testis.

수경재배에 의한 중금속 (As 및 Cd) 오염토양의 식물상 복원공법 적용 식물종 선별 (Selection of Plant Species for Phytoremediation of Heavy Metal (As and Cd) Contaminated Soil using Hydroponic Culture)

  • 김범준;배범한;김영훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권1호
    • /
    • pp.28-38
    • /
    • 2024
  • Phytoremediation presents a low-carbon and eco-friendly solution for heavy metal-contaminated soils, which pose great health and environmental risks to humans and ecosystems. A hydroponic culture was used to quantitatively assess the phytoremediation potential of plant species to remediate As or Cd-contaminated soil in field application. This study examined the growth, uptake, and distribution of Cd in the roots and shoots of Phalaris arundinacea and Brassica juncea in hydroponic conditions with Cd concentrations ranging from 0 to 20 mg/L for 10 days. Additionally, Aster koraiensis and Pteris multifida were cultivated in hydroponic conditions containing As concentrations ranging from 0 to 40 mg/L for 10 days. The concentrations of Cd in the above-ground part and root tissues of P. arundinacea and B. juncea reached a maximum of 147.7 and 1926.7 mg/kg-D.W.(Dry Weight), and 351.6 and 11305.5 mg/kg-D.W., respectively. Bioconcentration factor (BCF) for P. arundinacea and B. juncea were 68.9 and 122.3, respectively. Both species exhibited a translocation factor (TF) of less than 0.1, indicating their eligibility for phytostabilization. Aster koraiensis exhibited significant As accumulation of 155.1 and 1306.7 mg/kg D.W. in the above-ground part and root, respectively. However, this accumulation resulted with substantial weight loss and the manifestation of toxic symptoms. P. multifida exhibited higher accumulation of As (345.1 mg/kg-D.W.) in the fronds than in the roots (255.4 mg/kg-D.W.), corresponding to BCF values of 18.6 and 7.6, respectively, and a TF greater than 1.2. A TF value greater than 1.0 indicates that P. multifida is a viable option for phytoextraction.

Comparison of Various Single Chemical Extraction Methods for Predicting the Bioavailability of Arsenic in Paddy Soils

  • Go, Woo-Ri;Jeong, Seon-Hee;Kunhikrishnan, Anitha;Kim, Gyeong-Jin;Yoo, Ji-Hyock;Cho, Namjun;Kim, Kwon-Rae;Kim, Kye-Hoon;Kim, Won-Il
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.464-472
    • /
    • 2014
  • The Codex Committee of Contaminants in Food (CCCF) has been discussing a new standard for arsenic (As) in rice since 2010 and a code of practice for the prevention and reduction of As contamination in rice since 2013. Therefore, our current studies focus on setting a maximum level of As in rice and paddy soil by considering bioavailability in the remediation of As contaminated soils. This study aimed to select an appropriate single chemical extractant for evaluating the mobility of As in paddy soil and the bioavailability of As to rice. Nine different extractants, such as deionized water, 0.01 M $Ca(NO_3)_2$, 0.1 M HCl, 0.2 M $C_6H_8O_7$, 0.43 M $HNO_3$, 0.43 M $CH_3COOH$, 0.5 M $KH_2PO_4$, 1 M HCl, and 1 M $NH_4NO_3$ were used in this study. Total As content in soil was also determined after aqua regia digestion. The As extractability of the was in the order of: Aqua regia > 1 M HCl > 0.5 M $KH_2PO_4$ > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.1 M HCl > 0.43 M $CH_3COOH$ > deionized water > 1 M $NH_4NO_3$ > 0.01 M $Ca(NO_3)_2$. Correlation between soil extractants and As content in rice was in the order of : deionized water > 0.01 M $Ca(NO_3)_2$ > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.5 M $KH_2PO_4$ > 1 M $NH_4NO_3$ > 0.2 M $C_6H_8O_7$ > 0.43 M $HNO_3$ > 1M HCl > Aqua regia. BCF (bioconcentration factor) according to extractants was in the order of : 0.01M $Ca(NO_3)_2$ > 1 M $NH_4NO_3$ > deionized water > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.5 M $KH_2PO_4$ > 1 M HCl > Aqua regia. Therefore, 0.01 M $Ca(NO_3)_2$ ($r=0.78^{**}$) was proven to have the greatest potential for predicting As bioavailability in soil with higher correlation between As in rice and the extractant.

Heavy Metal(loid) Levels in Paddy Soils and Brown Rice in Korea

  • Kunhikrishnan, Anitha;Go, Woo-Ri;Park, Jin-Hee;Kim, Kwon-Rae;Kim, Hyuck-Soo;Kim, Kye-Hoon;Kim, Won-Il;Cho, Nam-Jun
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.515-521
    • /
    • 2015
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to monitor the background levels of heavy metal(loid)s, arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in major rice growing soils and its accumulation in brown rice in Korea. The samples were collected from 82 sites nationwide in the year 2012. The mean and range values of As, Cd, Cu, Hg, Ni, Pb, and Zn in paddy soils were 4.41 (0.16-18.9), 0.25 (0.04-0.82), 13.24 (3.46-27.8), 0.047 (0.01-0.20), 13.60 (3.78-35.0), 21.31 (8.47-36.7), and 54.10 $(19.19-103.0)mg\;kg^{-1}$, respectively. This result indicated that the heavy metal(loid) levels in all sampled paddy soils are within the permissible limits of the Korean Soil Environment Conservation Act. The mean and range values of As, Cd, Cu, Hg, Ni, Pb, and Zn in brown rice were 0.146 (0.04-0.38), 0.024 (0.003-0.141), 4.27 (1.26-16.98), 0.0024 (0.001-0.008), 0.345 (0.04-2.77), 0.113 (0.04-0.197), and 22.64 $(14.1-35.1)mg\;kg^{-1}$, respectively. The mean and range BCF (bioconcentration factor) values of As, Cd, Cu, Hg, Ni, Pb, and Zn in brown rice were 0.101 (0.01-0.91), 0.121 (0.01-0.70), 0.399 (0.05-2.60), 0.061 (0.016-0.180), 0.033 (0.004-0.44), 0.005 (0.003-0.013), and 0.473 (0.19-1.07), respectively, with Zn showing the highest. The results show that the levels of all metal(loid)s in all sampled brown rice are generally within the acceptable limit for human consumption.