Because arrhythmia occurs irregularly, it should be examined for at least 24 hours for accurate diagnosis. For this reason, this paper developed firmware software for arrhythmia detection and prevented consumption of temporal and human resources and enabled continuous management and early diagnosis. Prior to the experiment, the interval between the R peaks of the QRS Complex was calculated using the Pan-Tompkins algorithm. The developed firmware software designed and implemented an algorithm to detect arrhythmia such as tachycardia, bradycardia, ventricular tachycardia, persistent tachycardia, and non-persistent tachycardia, and a data transmission format to monitor the collected data based on BLE. As a result of the experiment, arrhythmia was found in real time according to the change in BPM as designed in this paper. And the data quality for BLE communication was verified by comparing the sensor's serial communication value with the Android application reception value. In the future, wearable devices for real-time arrhythmia detection will be lightweight and developed firmware software will be applied.
Cardiac arrhythmia is irregular heart rate. It's one of the reason of unpredictable sudden death. Accurate diagnosis and management of cardiac arrhythmia are the most important factors for the life of patient. To obtain a good prognosis, Dentist should be know and manage the multi-types of cardiac arrhythmia during dental treatment with the cooperation of medical doctor majored in cardiac circulation medicine. We casually found the cardiac arrhythmia in mandible prognathism patient during preparation for orthognathic surgery. Orthognathic surgery for cardiac arrhythmia patient was done successfully under general anesthesia with the temporary cardiac pace-maker.
This paper describes a software algorithm for automatic diagnosis of arrhythmia using the criteria of Minnesota code manual. This algorithm represents more accurate and more objective information to medical doctor by standardizing the criteria of diagnosis of arrhythmia. Because this algorithm doesn't need complicated mathematic processing, it carries out the real-time automatic diagnosis that is very important in clinic. The Decision-Table technology suggests the proper results for the given conditions. So it expresses the complicated medical problems simply and clearly, those are not solved by the mathematical methods. The Decision-Tables have very simple structure and so it is very easy to correct or expand the system by adding or correcting some rules.
This paper describes a software algorithm for automatic diagnosis of arrhythmia using the criteria of Minnesota code manual. This algorithm provides more accurate and more objective information to medical doctor by standardizing the criteria of diagnosis of arrhythmia. Because this algorithm doesn't need complicated mathematic processing, it carries out the real-time automatic diagnosis that is very important in clinic. The Decision-Table technology suggests the proper results for the given conditions. So it can express clearly the complicated medical problems those are not solved by the mathematical methods. The Decision-Tables have very simple structure. Therefore, it is very easy to correct or expand the system by adding or correcting some rules.
Premature contraction arrhythmia is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Most of arrhythmia clasification methods have been developed with the primary objective of the high detection performance without taking into account the computational complexity. Also, personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Therefore it is necessary to design efficient method that classifies arrhythmia by analyzing the persons's physical condition and decreases computational cost by accurately detecting minimal feature point based on only QRS features. We propose method for personalized specific classification of premature contraction arrhythmia based on QRS features in smart healthcare environments. For this purpose, we detected R wave through the preprocessing method and SOM and selected abnormal signal sets.. Also, we developed algorithm to classify premature contraction arrhythmia using QRS pattern, RR interval, threshold for amplitude of R wave. The performance of R wave detection, Premature ventricular contraction classification is evaluated by using of MIT-BIH arrhythmia database that included over 30 PVC(Premature Ventricular Contraction) and PAC(Premature Atrial Contraction). The achieved scores indicate the average of 98.24% in R wave detection and the rate of 97.31% in Premature ventricular contraction classification.
Arrhythmias in the neonatal period are not uncommon, and may occur in neonates with a normal heart or in those with structural heart disease. Neonatal arrhythmias are classified as either benign or nonbenign. Benign arrhythmias include sinus arrhythmia, premature atrial contraction, premature ventricular contraction, and junctional rhythm; these arrhythmias have no clinical significance and do not need therapy. Supraventricular tachycardia, ventricular tachycardia, atrioventricular conduction abnormalities, and genetic arrhythmia such as congenital long-QT syndrome are classified as nonbenign arrhythmias. Although most neonatal arrhythmias are asymptomatic and rarely life-threatening, the prognosis depends on the early recognition and proper management of the condition in some serious cases. Precise diagnosis with risk stratification of patients with nonbenign neonatal arrhythmia is needed to reduce morbidity and mortality. In this article, I review the current understanding of the common clinical presentation, etiology, natural history, and management of neonatal arrhythmias in the absence of an underlying congenital heart disease.
Patients with congenital heart diseases (CHD) are confronted with early- and late-onset complications, such as conduction disorders, arrhythmias, myocardial dysfunction, altered coronary flow, and ischemia, throughout their lifetime despite successful hemodynamic and/or anatomical correction. Rhythm disturbance is a well-known and increasingly frequent cause of morbidity and mortality in patients with CHD. Predisposing factors to rhythm disturbances include underlying cardiac defects, hemodynamic changes as part of the natural history, surgical repair and related scarring, and residual hemodynamic abnormalities. Acquired factors such as aging, hypertension, diabetes, obesity, and others may also contribute to arrhythmogenesis in CHD. The first step in evaluating arrhythmias in CHD is to understand the complex anatomy and to find predisposing factors and hemodynamic abnormalities. A practical stepwise approach can lead to diagnosis and prompt appropriate interventions. Electrophysiological assessment and management should be done with integrated care of the underlying heart defects and hemodynamic abnormalities. Catheter ablation and arrhythmia surgery have been increasingly applied, showing increasing success rates with technological advancement despite complicated arrhythmia circuits in complex anatomy and the difficulty of access. Correction of residual hemodynamic abnormalities may be critical in the treatment of arrhythmia in patients with CHD.
본 논문에서는 먼저 심전도 진단을 위한 처리 과정별 관련 연구내용을 살펴본 후 심전도 신호의 리듬 특징을 이용하여 부정맥을 검출 및 분류하는 방법을 제안한다. 특징 추출에서는 리듬 구간에 대하여 동일성 및 규칙성 등의 리듬 및 심박 분포에 관련되는 특징을 추출하게 되며, 리듬 분류에서는 리듬 구간의 특징에 대하여 미리 구축된 규칙 베이스를 이용하여 리듬 유형을 분류하게 된다. MIT-BIH 부정맥 데이터베이스의 모든 리듬 유형에 대한 실험을 통하여 정상 리듬 규칙만으로도 100% 부정맥 검출 성능을 보였으며, 부정맥 리듬 규칙으로는 유형 분류 적용 가능성을 확인하였다.
This paper describes a design of hardware system for real time automatic diagnosis of ECG arrhythmia based on pipeline processor consisting of three microcomputer. ECG data is acquisited by 12 bit A/D converter with hardware QRS triggered detector. Four diagnostic parameters-heart rate, morpholigy, axis, and ST segment-are used for the classification and the diagnosis of arrhythmia. The functions of the main CPU were distributed and processed with three microcomputers. Therefore the effective data process and the real time process using microcomputer can be obtained. The interconnection structure consisting of two common memory unit is designed to decrease the delay time caused by data transfer between processors and be which the delay time can be taken 1% of one clock period.
The bio signals essentially have different characteristics in each person. And the main purpose of automatic diagnosis algorithm based on bio signals focuses on discriminating differences of abnormal state from personal differences. In this paper, we propose automatic ECG diagnosis algorithm which discriminates normal heart beats from premature ventricular contraction using optimization of wavelet parameterization to solve that problem. The proposed algorithm optimizes wavelet parameter to let energy of signal be concentrated on specific scale band. We can reduce the personal differences and consequently highlight the differences coming from arrhythmia via this process. The proposed algorithm using ELM as a classifier show high discrimination performance between normal beat and PVC. From the experimental results on MIT-BIH arrhythmia database the performances of the proposed algorithm are 98.1% in accuracy, 93.0% in sensitivity, 96.4% in positive predictivity, and 0.8% in false positive rate. This results are similar or higher then results of existing researches in spite of small human intervention.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.