• Title/Summary/Keyword: Arrest

Search Result 1,750, Processing Time 0.025 seconds

Induction of G1 Arrest by Methanol Extract of Lycopus lucidus in Human Lung Adenocarcinoma A549 Cells (택란 메탄올 추출물에 의한 인체 폐암 세포주 A549의 G1 arrest 유발)

  • Park, Hyun-Jin;Jin, Soojung;Oh, You Na;Yun, Seung-Geun;Lee, Ji-Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1109-1117
    • /
    • 2013
  • Induction of G1 Arrest by Methanol Extract of Lycopus lucidus in Human Lung Adenocarcinoma A549 Cells Lycopus lucidus, a herbaceous perennial, is used as a traditional remedy in East Asia, including China and Korea. It has been reported that L. lucidus has anti-allergic effects, inhibitory effects on cholesterol acyltransferase in high glucose-induced vascular inflammation, and anti-proliferative effects in human breast cancer cells. However, the molecular mechanisms of the anti-cancer effects of L. lucidus have not yet been fully determined. In this study, we evaluated the anti-cancer effect and the mechanism of action of L. lucidus in human lung adenocarcinoma A549 cells using methanol extracts of L. lucidus (MELL). MELL treatment showed cytotoxic activity in a dose-dependent manner and induced G1 arrest in A549 cells. The induction of G1 arrest by MELL was associated with the up-regulation of phospho-CHK2 and the down-regulation of Cdc25A phosphatase. In addition, MELL treatment induced decreased expression of G1/S transition-related proteins, including CDK2, CDK4, CDK6, cyclin D1 and cyclin E. MELL also regulated the mRNA expression of CDK2 and cyclin E. On the other hand, the expression of p53 and the cyclin-dependent kinase inhibitor p21 was not induced by MELL. Collectively, these results suggest that MELL may exert an anti-cancer effect by cell cycle arrest at G1 phase through the ATM/CHK2/Cdc25A/CDK2 pathway in A549 cells.

Resuscitative Endovascular Balloon Occlusion of the Aorta in Impending Traumatic Arrest: Is It Effective?

  • Chung, Jae Sik;Kim, Oh Hyun;Kim, Seongyup;Jang, Ji Young;An, Gyo Jin;Jung, Pil Young
    • Journal of Trauma and Injury
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • Purpose: Hemorrhagic shock is the leading cause of death in trauma patients worldwide. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a technique used to improve the hemodynamic stability of patients with traumatic shock and to temporarily control arterial hemorrhage. However, further research is required to determine whether REBOA with cardiopulmonary resuscitation (CPR) in near-arrest or arrest trauma patients can help resuscitation. We analyzed trauma patients who underwent REBOA according to their CPR status and evaluated the effects of REBOA in arrest situations. Methods: This study was a retrospective single-regional trauma center study conducted at a tertiary medical institution from February 2017 to November 2019. We evaluated the mortality of severely injured patients who underwent REBOA and analyzed the factors that influenced the outcome. Patients were divided into CPR and non-CPR groups. Results: We reviewed 1,596 trauma patients with shock, of whom 23 patients underwent REBOA (1.4%). Two patients were excluded due to failure and a repeated attempt of REBOA. The Glasgow Coma Scale score was lower in the CPR group than in the non-CPR group (p=0.009). Blood pressure readings at the emergency room were lower in the CPR group than in the non-CPR group, including systolic blood pressure (p=0.012), diastolic blood pressure (p=0.002), and mean arterial pressure (p=0.008). In addition, the mortality rate was higher in the CPR group (100%) than in the non-CPR group (50%) (p=0.012). The overall mortality rate was 76.2%. Conclusions: Our study suggests that if REBOA is deemed necessary in a timely manner, it is better to perform REBOA before an arrest occurs. Therefore, appropriate protocols, including pre-hospital REBOA, should be constructed to demonstrate the effectiveness of REBOA in reducing mortality in arrest or impending arrest patients.

Surgical Correction of Total Anomalous Pulmonary Venous Connection without Total Circulatory Arrest (완전 순환 정지 없이 시행한 총 폐정맥 환류 이상의 수술 교정)

  • Han Won Kyung;Cho Joon Yong;Lee Jong Tae;Kim Kyu Tae;Chang Bong Hyun;Lee Eung Bae
    • Journal of Chest Surgery
    • /
    • v.39 no.1 s.258
    • /
    • pp.12-17
    • /
    • 2006
  • Background: Circulatory arrest under deep hypothermia is an important auxiliary means for surgical correction of total anomalous pulmonary venous connection (TAPVC), However, cardiac operations under deep hypothermic circulatory arrest are associated with the risk of post-arrest neurologic abnormalities. The purpose of this study is to evaluate the results of the surgical correction of total anomalous pulmonary venous connection without the total circulatory arrest. Materiai and Method: Between April 2000 and October 2004, hospital records of 10 patients were reviewed retrospectively. Result: The locations for abnormal anatomical connections were supracardiac in 7 cases, cardiac in 1 case, and infracardiac in 2 cases. The mean cardiopulmonary bypass time and aorta cross clamp time were 116.8$\pm$40.7 and 69.5$\pm$24.1 minutes. There was no surgical mortality. Postoperative complications were post-repair pulmonary venous stenosis in 1 case, pneumonia in 1, pneumothorax in 1, wound infection in 1,and diaphragmatic paralysis in 1. All patients without pulmonary venous stenosis were in NYHA class I at mean follow-up of 16.6 months (3$\∼$49 months) Conclusion: We could obtain excellent results by repair without the total circulatory arrest for total anomalous pulmonary venous connection.

Cell Cycle Arrest Effects by Artemisia annua Linné in Hep3B Liver Cancer Cell (Hep3B 간암세포에서 개똥쑥 추출물에 의한 Cell Cycle Arrest 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Kim, Sang Yong;Ha, Sung Ho;Kim, Young Min;Yoo, Je-Geun
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.175-181
    • /
    • 2015
  • Cells proliferate via repeating process that growth and division. This process is G1, S, G2 and M four phases consists. Monitoring the progression of the cell cycle is a specific step that to be a continuous process is repeated to adjust the start of the next step. At this time, this process is called a Checkpoint. Currently, there are three known checkpoints that G1-S phase, G2-M phase, and the M phase. In this study, we confirmed that cell cycle arrest effects by ethanol extracts of Artemisia annua Linne (AAE) in Hep3B liver cancer cells. AAE was regulated proteins which involved in cell cycle such as pAkt, pMDM2, p53, p21, pCDK2 (T14/Y15). AAE induced cell cycle arrest in G1 checkpoint through phosphorylation of CDK2. Akt and p53 upstream is inhibited by AAE and p53 activated by non-activated pMDM2, p53 inhibitor. Thereby, activated p53 is transcript to p21 and activated p21 protein is combined with Cyclin E-pCDK2 complex. Therefore, we confirmed that AAE-induced cell cycle arrest was occurred by p21-Cyclin E-pCDK2 complex by inhibition of pAkt signal. Because of this cell cycle can't pass to S phase from G1 phase.

NADPH oxidase inhibitor diphenyleneiodonium induces p53 expression and cell cycle arrest in several cancer cell lines (NADPH oxidase 저해제인 diphenyleneiodonium의 p53 발현 및 암세포의 성장억제에 대한 연구)

  • Jo, Hong-Jae;Kim, Kang-Mi;Song, Ju-Dong;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.778-782
    • /
    • 2007
  • The Diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the cell growth progression of human colon cancer cells HCT-116 (wild-type p53), HT-29 (p53 mutant) and human breast cancer cells MCF-7 (wild-type p53). DPI treatment in cancer cells evoked a dose- and time-dependent growth inhibition, and also induced the cell cycle arrest in C2/M phase. The peak of cell population arrested in C2/M phase was observed at12 hr after treatment of DPI. In addition, DPI significantly induced the expression of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest, at 6 hr in DPI-stimulated cells. However, a catechol apocynin, which inhibits the assembly of NADPH oxidase, did not induce p53 expression. This suggest that p53 expression induced by DPI is not associated with the inhibition of NADPH oxidase. In conclusion, we suggest that DPI induces the expression of wild-type p53 by ROS-in-dependent mechanism in several cancer cells, and upregulated p53 may be involved in regulatory mechanisms for growth inhibition and cell cycle arrest at C2/M phase in DPI-stimulated cells.

G1 Arrest of U937 Human Monocytic Leukemia Cells by Sodium Butyrate, an HDAC Inhibitor, Via Induction of Cdk Inhibitors and Down-regulation of pRB Phosphorylation (Cdk inhibitors의 발현 증가 및 pRB 인산화 저해에 의한 HDAC inhibitor인 sodium butyrate에 의한 인체백혈병세포의 G1 arrest유발)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.871-877
    • /
    • 2009
  • We investigated the effects of sodium butyrate, a histone deacetylase inhibitor, on the cell cycle progression in human monocytic leukemia U937 cells. Exposure of U937 cells to sodium butyrate resulted in growth inhibition, G1 arrest of the cell cycle and induction of apoptosis in a dose-dependent manner as measured by MTT assay and flow cytometry analysis. The increase in G1 arrest was associated with the down-regulation in cyclin D1, E, A, cyclin-dependent kinase (Cdk) 4 and 6 expression, and up-regulation of Cdk inhibitors such as p21 and p27. Sodium butyrate treatment also inhibited the phosphorylation of retinoblastoma protein (pRB) and p130, however, the levels of transcription factors E2F-1 and E2F-4 were not markedly modulated. Furthermore, the down-regulation of phosphorylation of pRB and p130 by this compound was associated with enhanced binding of pRB and E2F-1, as well as p130 and E2F-4, respectively. Overall, the present results demonstrate a combined mechanism involving the inhibition of pRBjp130 phosphorylation and induction of Cdk inhibitors as targets for sodium butyrate that may explain some of its anti-cancer effects in U937 cells.

Adenosine Receptors Mediated Intracellular Calcium in Cumulus Cells Involved in the Maintenance of First Meiotic Arrest

  • Hwang, Heekyung;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.17 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Keeping the intact germinal vesicle (GV) is essential for maintaining the capacity of mammals including human. It is maintained by very complex procedures along with folliculogenesis and is a critical step for getting competent oocyte. So far, a few mechanisms involved in folliculogenesis are known but GV arrest mechanisms are largely unrevealed. Cyclic AMP, a adenosine derived substance, have been used as inhibitor of germinal vesicle breakdown as a putative oocyte maturation inhibitor. In this study, we examined the potency of adenosine as GV maintainer and a possible signaling mediator for that. A1, A2b, and A3 were detected in cumulus cells of cumulus enclosed-oocyte (CEO). Intact of germinal vesicle was not kept like in follicle but the spontaneous maturation was inhibited by exogenous adenosine. It is inhibited with concentration dependent manners. Intracellular calcium level of cumulus was extensively increased after adenosine treatment. Based on these results it is suggested that one of the pathway for GV arrest by adenosine and its receptors is calcium mediated signaling pathway in CEO.

Change in Fracture Toughness within Heat-Affected Zone of SA-Welded 9% Ni Steel (LNG 저장탱크 내조용 9% Ni강의 SAW 용접열영향부내 파괴인성 변화 평가)

  • Jang, Jae-Il;Lee, Jeong-Seok;Lee, Baek-U;Ju, Jang-Bok;Gwon, Dong-Il;Kim, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.528-536
    • /
    • 2002
  • As one step for the safety performance of LNG storage tank, the change in fracture toughness within the X-grooved weld heat-affected zone (HAZ) of newly developed 9% Ni steel, which was submerged arc (SA)-welded, was investigated. Both crack initiation fracture toughness and crack arrest fracture toughness were evaluated by the crack tip opening displacement (CTOD) tests and compact crack arrest (CCA) tests. As the evaluated region approached the fusion line, each test result shorted different tendency, that is, crack initiation toughness decreased while crack arrest toughness increased. The results were discussed through the observation of the microstructural change.

Pharmacodynamics of Antitumor Activity of Paclitaxel in Monolayers and Histocultures of Human NSCLC Cells

  • Park, Jong-Kook;Kim, Seong-Yun;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.5
    • /
    • pp.361-367
    • /
    • 2005
  • In this study, we evaluated and compared the pharmacodynamics of paclitaxel (PTX) in human A549 NSCLC cells grown as monolayers or as three-dimensional histocultures. Growth inhibitory effects were determined after incubating cells in drug free medium until 96 hr post drug exposure initiation. Cell cycle arrest and apoptosis were measured by flow cytometry. The growth inhibition induced by PTX was significantly different in monolayers and histocultures, and PTX showed significantly less cytotoxicity in histocultures where large resistant fractions were observed. Moreover, although PIX induced significant $G_{2}/M$ arrest followed by apoptosis in monolayers in a drug concentration-dependant manner, $G_{2}/M$ arrest was not elicited in histocultures. However, apoptotic cells appeared from the $G_{2}/M$ phase in histocultures. In this study, we provide first evidence that PIX in three-dimensional histocultures, does not induce $G_{2}/M$ arrest, but rather that it induces $G_{2}/M$ phase specific apoptosis. Overall, our data demonstrate different pharmacodynamics of PTX in traditional monolayer and three-dimensional histocultures.