• Title/Summary/Keyword: Array chip

Search Result 533, Processing Time 0.03 seconds

A Design and Implementation of 4×10 Gb/s Transimpedance Amplifiers (TIA) Array for TWDM-PON (TWDM-PON 응용을 위한 4×10 Gb/s Transimpedance Amplifier 어레이 설계 및 구현)

  • Yang, Choong-Reol;Lee, Kang-Yoon;Lee, Sang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.440-448
    • /
    • 2014
  • A $4{\times}10$ Gb/s Transimpedance Amplifier (TIA) array is implemented in $0.13{\mu}m$ CMOS process technology, which will be used in the receiver of TWDM-PON system. A technology for bandwidth enhancement of a given $4{\times}10$ Gb/s TIA presented under inductor peaking technology and a single 1.2V power supply based low voltage design technology. It achieves 3 dB bandwidth of 7 GHz in the presence of a 0.5 pF photodiode capacitance. The trans-resistance gain is $50dB{\Omega}$, while 48 mW/ 1channel from a 1.2 V supply. The input sensitivity of the TIA is -27 dBm. The chip size is $1.9mm{\times}2.2mm$.

A 3 V 12b 100 MS/s CMOS DAC for High-Speed Communication System Applications (고속통신 시스템 응용을 위한 3 V 12b 100 MS/s CMOS D/A 변환기)

  • 배현희;이명진;신은석;이승훈;김영록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.685-691
    • /
    • 2003
  • This work describes a 3 V 12b 100 MS/s CMOS digital-to-analog converter (DAC) for high-speed communication system applications. The proposed DAC is composed of a unit current-cell matrix for 8 MSBs and a binary-weighted array for 4 LSBs, considering linearity, power consumption, chip area, and glitch energy. The low-glitch switch driving circuit is employed to improve the linearity and the dynamic performance. Current sources of the DAC are laid out separately from the current-cell switch matrix core. The prototype DAC is implemented in a 0.35 urn n-well single-poly quad-metal CMOS technology. The measured DNL and INL of the prototype DAC are within $\pm$0.75 LSB and $\pm$1.73 LSB, respectively, and the spurious-free dynamic range (SFDR) is 64 dB at 100 MS/s with a 10 MHz input sinewave. The DAC dissipates 91 mW at 3 V and occupies the active die area of 2.2 mm ${\times}$ 2.0 mm.

A New SoC Platform with an Application-Specific PLD (전용 PLD를 가진 새로운 SoC 플랫폼)

  • Lee, Jae-Jin;Song, Gi-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.285-292
    • /
    • 2007
  • SoC which deploys software modules as well as hardware IPs on a single chip is a major revolution taking place in the implementation of a system design, and high-level synthesis is an important process of SoC design methodology. Recently, SPARK parallelizing high-level synthesis software tool has been developed. It takes a behavioral ANSI-C code as an input, schedules it using code motion and various code transformations, and then finally generates synthesizable RTL VHDL code. Although SPARK employs various loop transformation algorithms, the synthesis results generated by SPARK are not acceptable for basic signal and image processing algorithms with nested loop. In this paper we propose a SoC platform with an application-specific PLD targeting local operations which are feature of many loop algorithms used in signal and image processing, and demonstrate design process which maps behavioral specification with nested loops written in a high-level language (ANSI-C) onto 2D systolic array. Finally the derived systolic array is implemented on the proposed application-specific PLD of SoC platform.

  • PDF

Implementation of cusomized RFID receiver module for In-VIVO wireless transmission (체내심부 무선전송을 위한 맞춤형 RFID 수신 모듈 구현)

  • An, Jinyoung;Sa, Gi-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.55-57
    • /
    • 2022
  • In this study, a customized semi-passive RFID receiver module was implemented for in-VIVO deep tissue photo-therapy. A novel wireless technique is required due to a limitation of RF communication in body environment, as internal body has a complex structure such as, skin, fat, skeleton, water, and so on. Recently, coherently incoherent beamforming (CIB) based on RFID was introduced and it is able to transmit wireless signal with high reliability under the incoherent condition such as in-VIVO deep tissue. The proposed miniature photo capsule based on RFID consists of miniature controller, ultra small LED array and wireless RFID chip. RF Reader can access with standard RFID protocol (ISO 18000-6c) using UHF RFID antenna, a control command is wirelessly writtern on USER Bank memory. With received control command, therapy LED array dims with mulilevel under timer control. The signal process of designed RFID photo therapy capsule is analyzed and evaluated under the various environments in detailed.

  • PDF

Development of a Temperature Sensor for OLED Degradation Compensation Embedded in a-IGZO TFT-based OLED Display Pixel (a-IGZO TFT 기반 OLED 디스플레이 화소에 내장되는 OLED 열화 보상용 온도 센서의 개발)

  • Seung Jae Moon;Seong Gyun Kim;Se Yong Choi;Jang Hoo Lee;Jong Mo Lee;Byung Seong Bae
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.56-61
    • /
    • 2024
  • The quality of the display can be managed by effectively managing the temperature generated by the panel during use. Conventional display panels rely on an external reference resistor for temperature monitoring. However, this approach is easily affected by external factors such as temperature variations from the driving circuit and chips. These variations reduce reliability, causing complicated mounting owing to the external chip, and cannot monitor the individual pixel temperatures. However, this issue can be simply and efficiently addressed by integrating temperature sensors during the display panel manufacturing process. In this study, we fabricated and analyzed a temperature sensor integrated into an a-IGZO (amorphous indium-gallium-zinc-oxide) TFT array that was to precisely monitor temperature and prevent the deterioration of OLED display pixels. The temperature sensor was positioned on top of the oxide TFT. Simultaneously, it worked as a light shield layer, contributing to the reliability of the oxide. The characteristics of the array with integrated temperature sensors were measured and analyzed while adjusting the temperature in real-time. By integrating a temperature sensor into the TFT array, monitoring the temperature of the display became easier and more accurate. This study could contribute to managing the lifetime of the display.

Genetic diversity and divergence among Korean cattle breeds assessed using a BovineHD single-nucleotide polymorphism chip

  • Kim, Seungchang;Cheong, Hyun Sub;Shin, Hyoung Doo;Lee, Sung-Soo;Roh, Hee-Jong;Jeon, Da-Yeon;Cho, Chang-Yeon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.11
    • /
    • pp.1691-1699
    • /
    • 2018
  • Objective: In Korea, there are three main cattle breeds, which are distinguished by coat color: Brown Hanwoo (BH), Brindle Hanwoo (BRH), and Jeju Black (JB). In this study, we sought to compare the genetic diversity and divergence among there Korean cattle breeds using a BovineHD chip genotyping array. Methods: Sample data were collected from 168 cattle in three populations of BH (48 cattle), BRH (96 cattle), and JB (24 cattle). The single-nucleotide polymorphism (SNP) genotyping was performed using the Illumina BovineHD SNP 777K Bead chip. Results: Heterozygosity, used as a measure of within-breed genetic diversity, was higher in BH (0.293) and BRH (0.296) than in JB (0.266). Linkage disequilibrium decay was more rapid in BH and BRH than in JB, reaching an average $r^2$ value of 0.2 before 26 kb in BH and BRH, whereas the corresponding value was reached before 32 kb in JB. Intra-population, interpopulation, and Fst analyses were used to identify candidate signatures of positive selection in the genome of a domestic Korean cattle population and 48, 11, and 11 loci were detected in the genomic region of the BRH breed, respectively. A Neighbor-Joining phylogenetic tree showed two main groups: a group comprising BH and BRH on one side and a group containing JB on the other. The runs of homozygosity analysis between Korean breeds indicated that the BRH and JB breeds have high inbreeding within breeds compared with BH. An analysis of differentiation based on a high-density SNP chip showed differences between Korean cattle breeds and the closeness of breeds corresponding to the geographic regions where they are evolving. Conclusion: Our results indicate that although the Korean cattle breeds have common features, they also show reliable breed diversity.

Underfill Flow Characteristics for Flip-Chip Packaging (플립칩 패키징 언더필 유동특성에 관한 연구)

  • Song, Yong;Lee, Sun-Beung;Jeon, Sung-Ho;Yim, Byung-Seung;Chung, Hyun-Seok;Kim, Jong-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.39-43
    • /
    • 2009
  • In this paper, the flow characteristics of underfill material driven by capillary action between flip-chip and substrate were investigated. Also, the effects of viscosity level and dispensing point of underfill on flow characteristics were investigated. Flip chip package size was $5mm{\times}5mm{\times}0.65^tmm$, the diameter of solder bump was 100 ${\mu}m$, and the pitch was 150 ${\mu}m$. It was full grid area-array type with 1024 I/Os. The glass substrate was used and the gap between the chip and substrate was 50 ${\mu}m$. For the experimental study, three different underfills with different viscous properties($2000{\sim}3700$ cps), and two different types of dispensing methods(center dot and edge dot) were used. The flow characteristics and filling time of underfill were investigated by using CCD camera. The results show that the edge flow was faster than center flow due to the edge effect, which was caused by the resistance of solder bumps. In case of edge dot dispensing type, the filling time was faster due to the large edge effect, compared to center dot dispensing type. Also, it was found that the underfill flow was faster and the filling time decreased as the viscosity level of underfill was decreased.

  • PDF

Field programmable analog arrays for implementation of generalized nth-order operational transconductance amplifier-C elliptic filters

  • Diab, Maha S.;Mahmoud, Soliman A.
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.534-548
    • /
    • 2020
  • This study presents a new architecture for a field programmable analog array (FPAA) for use in low-frequency applications, and a generalized circuit realization method for the implementation of nth-order elliptic filters. The proposed designs of both the FPAA and elliptic filters are based on the operational transconductance amplifier (OTA) used in implementing OTA-C filters for biopotential signal processing. The proposed FPAA architecture has a flexible, expandable structure with direct connections between configurable analog blocks (CABs) that eliminates the use of switches. The generalized elliptic filter circuit realization provides a simplified, direct synthetic method for an OTA-C symmetric balanced structure for even/odd-nth-order low-pass filters (LPFs) and notch filters with minimum number of components, using grounded capacitors. The filters are mapped on the FPAA, and both architectures are validated with simulations in LTspice using 90-nm complementary metal-oxide semiconductor (CMOS) technology. Both proposed FPAA and filters generalized synthetic method achieve simple, flexible, low-power designs for implementation of biopotential signal processing systems.

Implementation of Position Control of PMSM with FPGA

  • Reaugepattanawiwat, Chalermpol;Eawsakul, Nitipat;Watjanatepin, Napat;Pinprathomrat, Prasert;Desyoo, Phayung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1254-1258
    • /
    • 2004
  • This paper presents of position control of Permanent Magnet Synchronous Motor (PMSM) the implementation with Field Programmable Gate Array (FPGA) is proposed. Cascade control with inner loop as a current control and an outer loop as a position control is chosen for simplicity and fast response. FPGA is a single chip (single processing unit), which will perform the following tasks: receive and convert control signal, create a reference current signal, control current and create switch signal and act as position controller in a addition of zero form. The 10 kHz sampling frequency and 25 bit of floating point data are defined in this implementation.The experimental results show that the performance of FPGA based position control is comparable with the hardware based position control, with the advantage of control algorithm flexibility

  • PDF

Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision (스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험)

  • Lee, Woon-Kyu;Kim, Dong-Min;Choi, Ho-Jin;Kim, Jeong-Seob;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.