• Title/Summary/Keyword: Arrangement Algorithm

Search Result 242, Processing Time 0.031 seconds

A Study on the Beam Steering Error Modification method to Adaptive Array System (적응배열 시스템에서 빔 지향 오차 수정기법에 대한 연구)

  • Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.39-44
    • /
    • 2008
  • Wireless channel exists interference by multipath a component. Adaptation array antenna that remove this interference a component forms null point about interference signal and maximizes gains about target signal. If target signal and correlative coherent interference signal are received, there is problem that is removed from arrangement output to target signal. And, adaptation array antenna is shortcoming that is sensitive in directivity error. Therefore, in this paper, introduce each existing algorithm to solve directivity error about coherent interference, and proposed beam forming technique that minimize degree of freedom loss and damage because analyzes the problem and reduces coherent interference and directivity error.

  • PDF

The Numerical Simulation of Flow Field and Heat Transfer around 3-D Tube Banks (3차원 튜브 뱅크 주위의 난류 유동장 및 열전달에 대한 수치 해석적 연구)

  • Park, S.K.;Kim, K.W.;Ryou, H.S.;Choi, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.375-385
    • /
    • 1996
  • Turbulent flow and heat transfer characteristics around staggered tube banks were studied using the 3-D Navier-Stokes equations and energy equation governing a steady incompressible flow, which were reformulated in a non-orthogonal coordinate system with cartesian velocity components and discretized by the finite volume method with a non-staggered variable arrangement. The predicted turbulent kinetic energy using RNG $k-{\varepsilon}$ model was lower than that of standard $k-{\varepsilon}$ model but showed same result for mean flow field quantities. The prediction of the skin friction coefficient using RNG $k-{\varepsilon}$ model showed better trend with experimental data than standard $k-{\varepsilon}$ model result. The inclined flow showed higher velocity and skin friction coefficient than transverse flow because of extra strain rate ($\frac{{\partial}w}{{\partial}y}$). Also, this was why the inclined flow showed higher local heat transfer coefficient than the transverse flow.

  • PDF

Target Modeling with Color Arrangement for Region-Based Object Tracking (영역 기반 물체 추적에서 색상 배치를 고려한 표적 모델링)

  • Kim, Dae-Hwan;Lee, Seung-Jun;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, we propose a new class of color histogram model suitable for object tracking. In addition to the pixel count, each bin of the proposed model also contains the spatial mean and the average value of the pixels located at a certain distance from the mean location of the bin. Using the proposed color histogram model, we derive a mean shift procedure using the modified Bhattacharyya distance. Unlike most mean shift based methods, our algorithm performs well even when the object being tracked shares similar colors with the background. Experimental results demonstrate improved tracking performance over existing methods.

Sensor Mat using POF for Medical Application (의료용 플라스틱 광섬유 센서 매트)

  • Choi, Kyoo-Nam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.74-78
    • /
    • 2007
  • Novel concept of sensor mat and its signal processing method is proposed for patient monitoring in medical application. Proposed sensor mat structure has sensing inner layer which has cross-linked arrangement using plastic optical fiber(POF). Large core diameter of plastic optical fiber behaved as band pass filter by averaging the noise component caused by unwanted environmental factors. Signal processor followed by sensor output added noise immune performance by filtering out unwanted component. Fail-proof patient breath monitoring scheme was realized by using intelligent decision algorithm. Unlike the conventional approach by using mechanical sensor, which have high sensitivity both to signal and to environmental noise, our approach provided reliable breath motion detection.

Shipyard Spatial Scheduling Solution using Genetic Algorithms

  • Yoon Duck Young;Ranjan Varghese
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.35-39
    • /
    • 2004
  • In a shipyard, there exist various critical decision making components pertaining to various production hindrances. The most prominent one is best-fit spatial arrangement for the minimal spatial occupancy with better pick-ability for the erection of the ship in the dock. During the present research, a concept have been conceived to evade the gap between the identification oj inter-relationships among a set of blocks to be included on a pre-erection area, and a detailed graphical layout of their positions, is called an Optimal Block Relationship Diagram A research has been performed on generation of optimal (or near Optimal) that is, with minimal scrap area. An effort has been made in the generation of optimal (or near-optimal) Optimal Block Relationship Diagram with the Goldberg's Genetic Algorithms with a representation and a set of operators are 'trained' specifically for this application. The expected result to date predicts very good solutions to test problems involving innumerable different blocks to place. The suggested algorithm could accept input from an erection sequence generator program which assists the user in defining the nature and strength of the relationships among blocks, and could produce input suitable for use in a detailed layout stage.

  • PDF

A Performance Index for Time Slot Allocation in Link-16 Relative Navigation System

  • Lee, Jin Hyuk;Lee, Ju Hyun;Noh, Jae Hee;Lim, Deok Won;Park, Chansik;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.117-123
    • /
    • 2017
  • In this paper, we propose a performance index that can compare the position estimation performance according to the time slot allocation order, which is superior in the position estimation performance in the operation of the Link-16 based relative navigation system. In order to verify the validity of the performance index, a software-based Link-16 relative navigation system performance analysis platform composed of a signal generator, a signal reception and navigation algorithm execution unit, and a performance analysis unit was designed. Using the designed software platform, we analyzed the relationship between proposed performance index and position estimation performance according to time slot allocation order in the same position reference (PR) arrangement. The performance index of the proposed time slot allocation is expected to be utilized not only for the Link-16 system, but also for the Time Division Multiple Access (TDMA)-based navigation system.

Factory Layout and Aisle Structure Design Considering Dimension Constraints and Door Locations (형태 제약과 출입구를 고려한 설비 배치 및 복도 구조 디자인)

  • Chae-Bogk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.3
    • /
    • pp.58-66
    • /
    • 2003
  • The cut tree approach of Montreuil and Ratliff [16] and eigenvector approach [10] are used to automatically draw a feasible facility layout with aisle structure. The department arrangement can minimize an aisle distance criterion considering door locations and dimension constraints. The aisle distance is measured by the door to door distance between departments. An eigenvector and cut tree approaches [1] are implemented based on the branch and bound technique in Kim et al. [2] in order to obtain feasible layouts. Then, the algorithm to fix the door location of each department is developed. After the door locations are determined, the factory layout is evaluated in terms of aisle distance. The aisle structure is obtained by expanding the original layout. The solution is kept until we will find better factory layout. The proposed approach based on the branch and bound technique, in theory, will provide the optimal solution. If the runs are time and/or node limited, the proposed method is a strong heuristic. The technique is made further practical by the fact that the solution is constrained such that the rectangular shape dimensions length(l) and width(w) are fixed and a perfect fit is generated if a fit is possible.

Unsupervised Outpatients Clustering: A Case Study in Avissawella Base Hospital, Sri Lanka

  • Hoang, Huu-Trung;Pham, Quoc-Viet;Kim, Jung Eon;Kim, Hoon;Park, Junseok;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.480-490
    • /
    • 2019
  • Nowadays, Electronic Medical Record (EMR) has just implemented at few hospitals for Outpatient Department (OPD). OPD is the diversified data, it includes demographic and diseases of patient, so it need to be clustered in order to explore the hidden rules and the relationship of data types of patient's information. In this paper, we propose a novel approach for unsupervised clustering of patient's demographic and diseases in OPD. Firstly, we collect data from a hospital at OPD. Then, we preprocess and transform data by using powerful techniques such as standardization, label encoder, and categorical encoder. After obtaining transformed data, we use some strong experiments, techniques, and evaluation to select the best number of clusters and best clustering algorithm. In addition, we use some tests and measurements to analyze and evaluate cluster tendency, models, and algorithms. Finally, we obtain the results to analyze and discover new knowledge, meanings, and rules. Clusters that are found out in this research provide knowledge to medical managers and doctors. From these information, they can improve the patient management methods, patient arrangement methods, and doctor's ability. In addition, it is a reference for medical data scientist to mine OPD dataset.

DISEASE FORECAST USING MACHINE LEARNING ALGORITHMS

  • HUSSAIN, MOHAMMED MUZAFFAR;DEVI, S. KALPANA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1151-1165
    • /
    • 2022
  • Key drive of information quarrying is to digest liked information starting possible information. With the colossal amount of realities kept in documents, information bases, and stores, in the medical care area, it's inexorably significant, assuming excessive, arising compelling resources aimed at examination besides comprehension like information on behalf of the withdrawal of gen that might assistance in independent direction. Classification is method in information mining; it's characterized as per private, passing on item toward a specific course established happening it is likeness toward past instances of different substances trendy the data collection. In pre-owned recycled four Classification algorithm that incorporate Multi-Layer perception, KSTAR, Bayesian Network and PART to fabricate the grouping replicas arranged the malaria data collection and analyze the replicas, degree their exhibition through Waikato Environment for Knowledge Analysis introduced to Java Development Kit 8, then utilizations outfit's technique trendy promoting presentation of the arrangement methodology. The outcome perceived that Bayesian Network return most elevated exactness of 50.05% when working on followed by Multi-Layer perception, with 49.9% when helping is half, then, at that point, Kstar with precision of 49.44%, 49.5% when supporting individually and PART have lesser precision of 48.1% when helping, The exploration recommended that Bayesian Network is awesome toward remain utilized on Malaria data collection in our sanatoriums.

Wireless sensor network design for large-scale infrastructures health monitoring with optimal information-lifespan tradeoff

  • Xiao-Han, Hao;Sin-Chi, Kuok;Ka-Veng, Yuen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.583-599
    • /
    • 2022
  • In this paper, a multi-objective wireless sensor network configuration optimization method is proposed. The proposed method aims to determine the optimal information and lifespan wireless sensor network for structural health monitoring of large-scale infrastructures. In particular, cluster-based wireless sensor networks with multi-type of sensors are considered. To optimize the lifetime of the wireless sensor network, a cluster-based network optimization algorithm that optimizes the arrangement of cluster heads and base station is developed. On the other hand, based on the Bayesian inference, the uncertainty of the estimated parameters can be quantified. The coefficient of variance of the estimated parameters can be obtained, which is utilized as a holistic measure to evaluate the estimation accuracy of sensor configurations with multi-type of sensors. The proposed method provides the optimal wireless sensor network configuration that satisfies the required estimation accuracy with the longest lifetime. The proposed method is illustrated by designing the optimal wireless sensor network configuration of a cable-stayed bridge and a space truss.