• Title/Summary/Keyword: Aromatic Mixture

Search Result 118, Processing Time 0.025 seconds

Biodegradation of Mixture of Benzoate and m-Toluate with Pseudomonas sp. (Pseudomonas sp. 의한 Benzoate와 m-Toluate 혼합물의 생분해)

  • 정준영;김교창;조재민
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.352-357
    • /
    • 1998
  • Biodegradation of benzoate and m-toluate was investigated using a Pseudomonas sp. isolated in a continuous culture for 45 days with a step-wise increase of the subsrates. The optimum mixture ratio of benzoate and m-toluate was 75% and 25%, respectively. During 45-day culture, removal of benzoate and m-toluate, which was replaced 2,000 ppm on the 30th day were 94% and 79%, respectively, when COD removal rate was 80%. The enzymatic activity of catechol 1,2-dioxygenase increased and that of catechol 2,3-dioxygenase decreased as the concentration of m-toluate was increased. These results suggested that m-toluate induced enzyme activity for degradation of benzoate. The shape of isolated strain in the continuous culture was investigated with SEM and the results showed that the cell shape was more damage according to the higher concentration of aromatic hydrocarbons. Therefore, we suggested that the tolerance against aromatic hydrocarbons was related to not only enzymatic activity but also characteristic of cell membrane or cell wall.

  • PDF

Effects of Polycyclic Aromatic Hydrocarbons on DNA Damage and Plasma Protein Expression in Mouse

  • Oh, Sang-Nam;Oh, Eun-Ha;Im, Ho-Sub;Jo, Gyu-Chan;Sul, Dong-Geun;Kim, Young-Whan;Lee, Eun-Il
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmentally prevalent xenobiotics that exert complex effects on the biological system and characterized as probably carcinogenic materials. Single cell gel electrophoresis assays were performed in order to evaluate DNA damage occurring in the T-and B lymphocytes, spleens (T/B-cell), bone marrow, and livers of mouse exposed to mixture of PAHs (Benzo(a)pyrene, Benzo(e)pyrene, Fluoranthene, Pyrene) at dose of 400, 800, or 1600 mg/kg body weight for 2 days. DNA damage of the cells purified from mice was increased in dose dependent manner. In the blood cells and organs, DNA damage was also discovered to vary directly with PAHs. Especially T-cells had been damaged more than B-cell. Plasma proteomes were separated by 2-dimensional electrophoresis with pH 4-7 ranges of IPG Dry strips and many proteins showed significant up-and -down expressions with the dose dependent manner. Of these, significant 4 spots were identified using matrix-assisted laser desorption/ionization-time of fight (MALDI-TOF) mass spectrometry. Identified proteins were related to energy metabolism and signal transduction.

The Biodegradation of Mixtures of Benzene,Phenol,and Toluene by Mixed and Monoculture of Bacteria (단일배양 및 혼합배양에 의한 Benzene, Phenol 및 Toluene 혼합물의 생분해)

  • Lee, Chang-Ho;Oh, Hee-Mock;Kwon, Tae-Jong;Kwon, Gi-Seok;Kim, Seong-Bin;Kho, Yung-Hee;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.685-691
    • /
    • 1994
  • The biodegradation of aromatic compounds by mixed and monoculture was investigated in an artificial wastewater containing 500 mg/l of benzene(B), phenol(P), and toluene(T) in various combinations. None of three strains utilized P-xylene(X) as a carbon source, but they grew well on p-xylene in mixtures with benzene and toluene. In the mixed culture on mixed substrate, the length of lag phase was different depending on the nature of mixture. Cell growths of Flavobac- terium sp. BEN2 and Acinetobacter sp. GEM63 were inhibited in the presence of a 500 mg/l of phenol. When the mixed culture of three strains was cultured in a bench-scale reactor containing artificial wastewater, each of benzene, phenol, and toluene was not detected at 30 hrs, 50 hrs, and 12 hrs after incubation in the treatment. The removal rates of COD$_{t}$(total COD) and COD$_{s}$,(soluble COD) of upper phase after centrifugation during early 50 hrs were ca. 80% and ca. 93.8%, respectively.

  • PDF

Analysis on Ignition Delay Time According to the Ratio of Bio-aviation Fuel in Jet A-1 Mixture (바이오항공유의 함량 변화에 따른 점화지연특성 분석)

  • Kang, Saetbyeol;Jeong, Byunghun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.13-20
    • /
    • 2019
  • In this study, the ignition delay time of blended aviation fuels was measured and analyzed to confirm the characteristic of ignition delay according to the blending ratio of bio-aviation fuel to petroleum-based aviation fuel. The ignition delay time of bio-aviation fuel(Bio-6308) was shorter than that of petroleum-based aviation fuel(Jet A-1) at all measured temperatures; further, the ignition delay time of the blended aviation fuels shortened as the ratio of Bio-6308 increased. It was confirmed that the aromatic compounds constituting the Jet A-1 affect these results; this was done by comparing the obtained ignition delay time with that of n-heptane/Toluene.

Study on the Pervaporation Characteristic of Water-alcohol Mixtures through Aromatic Polyetherimide Membranes : I. Pervaporation through Structure Change of Symmetric Dense and Asymmetric Structure Membranes (방향계 폴리에테르이미드막의 물-알콜 혼합액의 투과증발 특성에 관한 연구 : I.구조 변화에 따른 투과증발)

  • Kim, S.G.;Jegal, J.G.;Lee, K.-H.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.945-953
    • /
    • 1997
  • Aromatic polyetherimide membranes were prepared by dry/wet phase inversion method and investigated regarding the pervaporation characteristic of water-alcohol mixtures by using the permselective property of imide group and the structure modification of skin layer of the membrane. The membrane selectivity increased with the reaction time of surface-modification, to some extent, and the density of top layer tends to increases with increasing the reaction time. In the case of dense membrane, the separation factor was 160 and 2000 for 90wt% ethanol mixture and 90wt% isopropanol solution, respectively, which implies that aromatic polyetherimide has a high permselectivity. The temperature dependence of permeation flux seems to follow an Arrhenius type at the temperature range of ($40^{\circ}C-70^{\circ}C$).

  • PDF

Development of Analytical Method of Polycyclic Aromatic Hydrocarbons Deposited on Tree Leaves by GC/MS (GC-MS 에 의한 나뭇잎에 침착된 다환방향족 탄화수소의 분석)

  • Chun, Man-Young;Lim, Ceoel-Soo;Kim, Tae-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.135-139
    • /
    • 1999
  • A new effective and economic method was developed, removing interferences such as chlorophyll and lipid from leaves with small amounts of reagents and solvents in order to analyse PAHs(Polycyclic Aromatic Hydrocarbons). The extract from a soxhlet containing $4{\sim}5g$ of leaves and 100ml of dichlormethane and refluxed for 20 hrs was concentrated and eluted with 60ml of a hexane:dichloromethane (1:1) mixture through a column of 9mm wide inner diameter and 130mm long, packed from the bottom with 2.5g of $Al_2O_3$, 1.5g of $SiO_2$and 2g of anhydrous $Na_2SO_4$. The eluent was concentrated and loaded on a GPC column of 20mm wide inner diameter and 280mm long, packed with 12g of Bio-beads. The column was washed with 37ml of the hexane:dichloromethane(1:1) mixture. Another 43ml of the mixture was eluted as a PAH fraction and collected. This eluent was concentrated under gentle nitrogen to $50{\mu}l$ and analysed using GC-MS. The recoveries, obtained by comparing with the amounts of the internal standards of deuterated PAHs were $43.3{\sim}107.5%$(RSD $2.2{\sim}9.5%$).

  • PDF

Development of HPLC Determination Method for Trace Levels of 1-, 2-Nitropyrenes and 2-Nitrofluoranthene in Airborne Particulates and Its Application to Samples Collected at Noto Peninsula

  • Hayakawa, Kazuichi;Tang, Ning;Sato, Kosuke;Izaki, Akihiko;Tatematsu, Michiya;Hama, Hirotaka;Li, Ying;Kameda, Takayuki;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.146-151
    • /
    • 2011
  • 1-Nitropyrene (1-NP), 2-NP and 2-nitrofluoranthene (2-NFR) are useful markers for studying the atmospheric behaviors of polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs). However, present methods for measuring trace levels of these compounds are lesssensitive and laborious. Here we describe several improvements to a previously reported high-performance liquid chromatography-chemiluminescence detection system that allows it to determine trace levels of 1-, 2-NPs and 2-NFR. The proposed system was equipped with a reducer column packed with Pt/Rh instead of zinc whose life-time was limited. The combination of Cosmosil MS-II (monomeric ODS) and AR-II (polymeric ODS) columns was used instead of polymeric ODS columns as the separator column to improve the separation. An ethanol mixture with acetate buffer (pH 5.5) was used in place of an acetonitrile mixture with the same buffer to activate the reducer column. The same ethanol mixture was used as the mobile phase for the clean-up column. The switching time of the column switching valve was optimized to concentrate the amino-derivatives of above NPAHs quantitatively on the concentrator column. The concentrations of bis(2,4,6-trichlorophenly) oxalate and hydrogen peroxide in the chemiluminescence reagent solution were optimized to 0.4 mM and 30 mM, respectively, to increase the sensitivity. Under the above conditions, the detection limits (S/N=3) of 1-, 2-NPs and 2-NFR were 1 fmol (0.25 pg), 10 fmol (2.5 pg) and 4 fmol (1 pg), respectively. The proposed system was effectively used to determine trace levels of 1-, 2-NPs and 2-NFR in airborne particulates collected at Noto Peninsula. The atmospheric concentrations of 1-, 2-NPs and 2-NFR were not more than sub pg $m^{-3}$ levels. They were higher in winter (January) than in summer (July). In both seasons, the concentrations were in decreasing order, [2-NFR]>[1-NP]>[2-NP].

PAH and Soot Formation Characteristics of DME/Ethylene Fuel (DME/에틸렌 연료의 PAH 및 매연의 생성 특성)

  • Yoon, Seung-Suk;Lee, Sang-Min;Chung, Suk-ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.171-177
    • /
    • 2005
  • In order to investigate the effect of dimethyl ether (DME) on PAH and soot formation, the fuel has been mixed to the counter-flow diffusion flames of ethylene. Laser-induced incandescence and laser-induced fluorescence techniques were employed to measure relative concentrations of soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that even though pure DME flame produces the minimal amount of PAH and soot, the mixture fuel of DME and ethylene could increase PAH and soot formation, as compared to those of pure ethylene flame. This implies that even though DME has been known to be a clean fuel for soot formation, the mixture fuel of DME and the hydrocarbon fuel could produce enhanced production of soot. Numerical simulation demonstrated that methyl (CH$_{3}$) radical generated by the initial pyrolysis of DME can be contributed to the enhancement of PAH and soot formation, through the formation of propargyl (C$_{3}$H$_{3}$) radical.

Radio Thin Layer Chromatography of Organic Halogen Compounds (有機할로겐化合物의 放射化 Thin Layer Chromatography)

  • YOU SUN KIM;SOON KO KIM;KI SOO KIM
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.45-50
    • /
    • 1967
  • Radio thin layer chromatography of organic halogen compounds by neutron irradiation technique was investigated for the purpose of identifying and separating the mixture of halogen compounds. It was found that various halides, organic acids, and aldehyde gave a distinct developing peak both in cases of individual compound and a mixture of two or three components when the samples were developed by solvent methanol. But poly chlorinated compounds and aromatic or alicyclic chlorides gave more than one component peak when the sample was developed after neutron irradiation. Rf value of each compound was distinct and reproducible. The procedures were described and validity of the present method is discussed.

  • PDF

Studies on the Separation and Identification of Acids in Izmir Tobacco Leaves (Izmir 잎담배 중 Acids 성분의 분리 및 확인에 관한 연구)

  • Lee, Un-Chul;Jang, Gi-Chul;Kim, Yong-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.172-180
    • /
    • 1994
  • This study was carried out to separate and identify the acidic compounds in tobacco leaves. Izmir tobacco leaves was extracted with isopropyl ether and the extract was concentrated. The concentrate was extracted with 6% NaHCO3 aqueous solution. The aqueous extract was acidified with sulfuric acid, and extracted with diethyl ether. The acidic material was fractionated on silicic acid column using a benzene-methanol mixture with a stepwise increasing methanol concentration. The resulting fractions were esterified with diazomethane, and then identified by GC, GC/MS using SPB -5 fused silica capillary column. Most of acidic compounds in Izmir tobacco leaves were elected from fraction B which was benzene-methanol(98 : 2) mixture on silicic acid column chromatography. The identified acidic compounds of Izmir tobacco leaves were 18 saturated acids, 8 unsaturated acids, 5 dicarboxylic acids, 13 aromatic acids and 7 terpenoid acids. The major acidic compounds of lzmir tobacco leaves were 2- methylbutanoic, 3-methyl butanoic, 3- methylpentanoic, hexanoic, nonanedioic, phenylacetic, benzoic, 4- methoxybenzoic, 3, 5- dimethoxybenzoic, methoxycinnamic and 3, 4- dimethoxycinnamic acid. Key Words : Izmir tobacco, Acidic compounds, GC/MS.

  • PDF