• Title/Summary/Keyword: Argopecten irradians

Search Result 19, Processing Time 0.022 seconds

Growth Characteristics of Bay Scallop (Argopecten irradians) reared in the Southern East Sea (동해 남부해역에서 양식된 해만가리비 (Argopecten irradians) 의 성장 특성)

  • Kim, Young Dae;Lee, Chu;Shim, Jeong Min;Kim, Gi Seung;Choi, Jae-Suk;Nam, Myung-Mo
    • The Korean Journal of Malacology
    • /
    • v.31 no.2
    • /
    • pp.103-112
    • /
    • 2015
  • Bay scallop (Argopecten irradians) has been farmed only in the South Sea of Korea. East Sea Fisheries Research Institute (ESFRI) has developed bay scallop aquaculture technologies to extend its aquaculture area to the Southeast Sea of Korea. For the artificial spawning, the water temperature was maintained at $23^{\circ}C$. Over 100,000,000 eggs were spawned through artificial spawning inductions, such as air exposure and thermal shock by rising the water temperature. The fertilization rate was over 91% with nearly 94,000,000 fertilized eggs. The shape of fertilized eggs was spherical with an average diameter of $61.7{\pm}0.05{\mu}m(54.1-67.4{\mu}m)$. Five days after fertilization, the eggs developed into prodissoconch shell, and continuously grew into umbo stage and then umbones stage. After 8 days of fertilization, the size of larva became $179.7{\pm}8.4{\mu}m$ on average ($150.4-204.8{\mu}m$), and the larva formed a foot and an eye spot. The larvae grew to $235.4{\pm}9.7{\mu}m$ in 10 days and attached to adherence material, becoming juvenile bay scallop. The shells grew from 22.71 mm to 72.40 mm in 6 month (June-December). The total weight increased from 2.0 g to 32.7 g at the same period. The daily growth rates of young scallop were $0.35mm\;d^{-1}$ (Apr. to Jun.) and $0.41mm\;d^{-1}$ (Jun. to Aug.), which were comparable to those found in the South Sea. These findings suggest that the bay scallop aquaculture may be suitable in the Southeast Sea of Korea and may provide an additional crop to aquaculturists.

A Study on Argopecten irradians Aquaculture in the North East Sea Regions (해만가리비 (Argopecten irradians) 의 동해 북부에서의 양식 연구)

  • Kim, Young Dae;Lee, Chu;Kim, Gi Seung;Park, Mi Seon;Park, Young Chel;kim, Young Suk;Yoo, Hyun Il
    • The Korean Journal of Malacology
    • /
    • v.32 no.4
    • /
    • pp.279-287
    • /
    • 2016
  • NIFS conducted a feasibility study on the bay scallop Argopecten irradians aquaculture in the test site of Dongsanri, Yangyang-gun, Gangwon-do in June 2015. The transplantation for the test was also carried out in June. The average shell length was $5.79{\pm}0.6mm$ at the time, $15.83{\pm}0.8mm$ in July, $39.40{\pm}0.7mm$ in September, $55.72{\pm}5.8mm$ in November and $59.67{\pm}1.7mm$ in December. At the time of transplantation, the average shell height was $6.06{\pm}0.7mm$, and it grew to $16.40{\pm}0.9mm$ in July, $53.16{\pm}5.2mm$ in November and $55.80{\pm}2.9mm$ in December. Total weight was $0.78{\pm}0.5g$ in July but increased to $24.25{\pm}4.2g$ in November and $26.06{\pm}4.3g$ in December. The daily growth rate of shell length(DGR) was 0.33 mm / day in June, 0.43 mm / day in September and 0.13 mm / day in November. DGR of weight was 0.20 g / day in June, 0.27 g / day in September, 0.06 g / day in November. The relative growth of shell length and shell height was y = 0.9132x and $R^2=0.9923$. As a result, it was proved that bay scallop aquaculture is possible in Gangwon province, the northern part of the East Sea. This will definitely increase the income of fishermen by enabling them to culture more aquaculture species than the single large Patinopecten yessoensis in the region.

Comapartive Study on the Growth of Bay Scallop, Argopecten irradians, in Three Rearing Sites (해만가리비, Argopecten irradians의 해역별 성장)

  • Oh, Bong-Sae;Yang, Moon-Ho;Jung, Choon-Goo;Kim, Young-Sook;Kim, Sook-Yang;Kim, Sung-Yeon
    • The Korean Journal of Malacology
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 2003
  • Water temperature during the culturing period was 10.4-25.5$^{\circ}C$ and there was a little difference between rearing sites. Salinity (25.00-31.17 psu) and DO (over 6.13 mg/l) showed reasonable condition for the growth of bay scallop. Concentrations of chlorophyll-a were ranged 1.69-7.40 $^{\mu}$g/l, and they fluctuated monthly in the every sampling site. During the growing period from June to October, dominant phytoplankton species were Ceratium sp. in Nammeon and Hoejin, Chaetoceros sp. in Dolsan. Density of phytoplankton was high in July, August and October, but it was low in September and November. When young bay scallops were cultured for 185 days in Nammyeon, Hoejin and Dolsan, shell heights were grown for 0.19 mm/day, 0.18 mm/day and 0.16 mm/day, respectively, and total weights were increased 0.16 g/day, 0.16 g/day and 0.13 g/day, respectively. Daily growth rates of shell height were 0.606%, 0.581% and 0.549%, and daily growth rates of total weight were 1.972%, 1.857% and 1.746%, respectively. Maximum predicted values of shell height calculated by von Bertalanffy growth model were 52.62 mm, 51.74 mm and 48.91 mm, respectively. Survival rate was the highest in Nammyeon (87.0%), but the rates in Hoejin and Dolsan sharply decreased after November.

  • PDF

Growth of Bay Scallop, Argopeten irradians at Different Rearing Depths (해만가리비, Argopecten irradians의 양성 수심에 따른 성장)

  • 오봉세;정춘구;김숙양
    • Journal of Aquaculture
    • /
    • v.15 no.1
    • /
    • pp.61-68
    • /
    • 2002
  • A comparative study on the effect of rearing depths at 2 (surface) and 5 (bottom) m on growth of the scallop was undertaken in Nam-myeon coastal area during June to December, 1997. There were very little difference in the levels of temperature (12.2 ~24.5$^{\circ}C$), salinity (27.3 ~33.1$\textperthousand) and dissolved oxygen (>7.05 mg/l) at a given month. But the chlorophyll level fluctuated between 1.2 and 11.0 $\mu g/l$ at the surface but below 2 $\mu g/l$ at the bosom. Highest phytoplankton density occurred in August and Ceratium dominated it during the period from June to October. Mean growth of the bay scallop at surface and bottom for the six months rearing period was as follows; 0.19 and 0.16 mm/day for shell height, and 0.16 and 0.12 g/day for total weight. Maximum predicted values of shell height calculated by von Bertalanffy growth model were 52.62 mm for the surface and 46.73 mm for the bottom reared scallop. Survival of the scallop was higher (80 %) for the surface group than that at the bottom (60%).

Effect of Selected Spat on Growth of Bay Scallop (Argopecten irradians) During Aquaculture (해만가리비 Argopecten irradians 양식시 성장에 미치는 치패의 선발 효과)

  • 오봉세;양문호;정춘구;김주일;김영숙;김숙양
    • Journal of Aquaculture
    • /
    • v.15 no.3
    • /
    • pp.123-129
    • /
    • 2002
  • In Nam-myeon coastal area of southern sea, Korea, the following hydrobiological conditions prevailed during 1997: water temperature: 12.6 ~24.5 $^{\circ}C$ ; Salinity: 27.32 ~33.$10 \textperthousand$, Dissolved oxygen: 7.05 $ml/L$ and Chlorophyll a: 1.69 ~ 7.40 $\mu $/L. Phytoplankton, dominated by Ceratium sp, peaked during June-July. Mean growth rates of the bay scallop of selected and non-selected groups cultured for 185 days in this area from July to December, 1997 were 0.17 and 0.19 mm/day for shell height, and 0.17 and 0.16 g/day for total weight, respectively. Maximum predicted values of shell height, calculated by von Bertalanffy growth model, were 54.98 mm for the selected and 52.62 mm for the non-selected groups. Survival of the selected and non-selected groups was 80.0 and 87.0%, respectively.

A study on the Oil Contents of Phytoplankton and Bay Scallop, Argopecten irradians (해만가리비와 먹이생물 Phytoplankton의 지질함량에 관한 연구)

  • Kim, Sook-Yang;Kang, Seok-Joong;Choi, Byeong-Dea;Jun, Sang-Ho
    • The Korean Journal of Malacology
    • /
    • v.26 no.3
    • /
    • pp.217-225
    • /
    • 2010
  • The total oil proportion of bay scallop by areas during the growing period was the highest (2.8%) at Tongyong in August, then it decreased to 1.88% in September and 0.62% in October, and it was the lowest (0.22%) in November. The total oil proportion of phytoplankton by areas was the highest at Tongyong, where it was decreased from 5.02% in August and 3.29% in September to 2.48% in October and 1.66% in November. For the composition of fatty acid of bay scallop by areas and seasons during the growing period, the major composition was 16:0 and 18:0 as saturated fatty acid, and 16:1n-7, 18:1n-7, 20:1n-9, ARA (20:4n-6), EPA (20:5n-3), DHA (22:6n-3) as monoenic acid. TMTD (4,8,12-trimethyltridecanoic acid) was detected in a little amount as special fatty acid. For the composition of fatty acid of prey by areas during the growing period of bay scallop from August to November 1998, n-3HUFA, Omega-3 highly unsaturated fatty acid, in August was 47.11% at Namhae in slowest growth, while it was distinctively low with 34.26% at Tongyong and 14.06% at Nammeon.

Genetic Diversity of Polydora haswelli (Polychaeta, Spionidae) in Korean Shellfish using cox1 Marker (cox1 분자마커를 이용한 한국산 패류 천공성 다모류 Polydora haswelli (Polychaeta, Spionidae) 유전자 다양성 발굴)

  • Lee, Soon Jeong;Kim, Seung Min;Kwon, Mun Gyeong;Lee, Sang-Rae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.685-690
    • /
    • 2021
  • Harmful shell-boring species of the genus Polydora (Polychaeta: Spionidae) were frequently reported from commercially important mollusk species in Korea, Japan and China. The traditional approach based on the morphological characteristics showed limitations for species discrimination among shell-boring species. Therefore, DNA barcoding was adopted to identify Polydora species using molecular markers. Two Polydora species (P. haswelli and P. hoplura) in abalone shells were reported from our previous molecular phylogenetic study. In this study, we additionally reported the presence of shell-boring Polydora haswelli in commercially sold shellfish. The taxon-specific cox1 marker used in this study successfully allowed the isolation of P. haswelli from cockle Scapharca subcrenata, mussel Mytilus galloprovincialis, oyster Crassostrea gigas and scallop Argopecten irradians. Polydora hoplura was not found in these shellfish species. The genetic variations were found on the intraspecific level of P. haswelli and the same genotype was also detected in different shellfish species. This result can provide information on a new host and accurate parasitic Polydora species. Moreover, this report can be used as the biodiversity data of Polydora species on the invasion and transition of harmful Polydora species in mollusk aquaculture farms.

Effect of Shell-type, Light and Temperature on the Shell Infiltration of Free-living Conchocelis of Three Pyropia Species (김(Pyropia spp.) 3종 유리사상체의 패각 잠입에 대한 패각 종류, 광과 온도의 영향)

  • Heo, Jin Suk;Park, Eun Jung;Hwang, Mi Sook;Choi, Han Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • To examine the optimal temperature, light intensity, and shell-type for shell-living conchocelis production, we tested the shell infiltration of free-living conchocelis fragments under various environmental conditions. Under a combination of various temperatures (10, 15, 20, 25 and 30℃) and light intensities (1, 5, 10, 20, 40, and 80 μmol m-2 s-1), the optimal infiltration conditions of the evaluated three Pyropia species were 20-25℃ and 5-80 μmol m-2 s-1 for P. yezoensis, 20-30℃ and 20-80 μmol m-2 s-1 for P. seriata, and 20-25℃ and 20-80 μmol m-2 s-1 for P. dentata. The infiltration efficiency of free-living conchocelis for different shell types was greater in Korean and Chinese oyster Crassostrea gigas shells than that in scallop Argopecten irradians and clam Meretrix lusoria shells. These results suggest that oyster shells are suitable substrates for shell-living conchocelis production. In conclusion, the present results for optimal infiltration conditions for free-living conchocelis of the three examined Pyropia species will contribute significantly to the production of stable shell-living conchocelis.

Accumulation and Depuration of Paralytic Shellfish Poison in Marine Organisms (수산생물 종류별 마비성 패류독소 축적 및 정화)

  • Mok, Jong-Soo;Oh, Eun-Gyoung;Son, Kwang-Tae;Lee, Tae-Seek;Lee, Ka-Jeong;Song, Ki-Cheol;Kim, Ji-Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.465-471
    • /
    • 2012
  • To compare the accumulation of paralytic shellfish poison (PSP) in different marine organisms, the occurrence and variation of PSP were surveyed in blue mussel Mytilus edulis, oyster Crassostrea gigas, short neck clam Ruditapes philippinarum, bay scallop Argopecten irradians, and warty sea squirt Styela clava collected from Jinhae Bay, Korea, in 2005 and 2006 year. We also investigated the ability of the blue mussel to detoxify PSP by relaying and depuration (via the water flow or water circulation system). In the marine organisms examined, PSP levels were the highest in blue mussel, followed in order by bay scallop, oyster, short neck clam, and warty sea squirt. Comparing the maximum PSP levels in the bivalve species examined in 2005 and 2006, PSP in blue mussel was 1.6-2.0, 4.0-5.9, and 5.1-6.0 times higher than in bay scallop, oyster, and short neck clam, respectively. Therefore, blue mussel could be useful as a bioindicator for PSP monitoring. With the increasing PSP levels in blue mussel in 2006, the proportion of PSP in its digestive gland increased to 95.1% when the maximum level was detected from the whole tissues of blue mussel on May 29. Subsequently, the PSP proportion in the digestive gland decreased as the PSP level in whole tissue decreased. The detoxification of PSP in blue mussel was greatest with relaying, followed by the water flow, and water circulation systems. Relaying decreased the PSP level below the regulatory limit of $80{\mu}g$/100 g after 2 days in low toxic sample with $124{\mu}g$/100 g, and after 7 days in high toxic sample with $401{\mu}g$/100 g. During depuration in the blue mussel with $401{\mu}g$/100 g via the water flow system, the PSP amounts in the digestive gland decreased by about 50% after 1 day, and about 77% after 7 days. In contrast, the PSP amounts in the soft body, gill, and mantle did not change significantly with depuration.