• 제목/요약/키워드: Argon plasma treatment

검색결과 83건 처리시간 0.035초

Effect of Argon Plasma Treatment On Silver Nanowires

  • Tran, Vo Thi Bao;Choi, Dooho
    • 마이크로전자및패키징학회지
    • /
    • 제28권1호
    • /
    • pp.73-77
    • /
    • 2021
  • In this study, we report on the effects of argon plasma treatment on Ag nanowires by varying the power and duration. Sheet resistance was found to be significantly reduced to 10 ohm/sq. relative to the value of 21 ohm/sq. for the pristine sample. Such a reduction was found to be associated with welded junctions between Ag nanowires, which results in enhanced current flow. With the optimized plasma treatment conditions, the maximum and average transmittance were 76.8% and 71%, respectively. Finally, we fabricated transparent heating devices based on the methodology, which exhibited superior heating capability.

Optimization of Atmospheric Cold Plasma Treatment with Different Gases for Reduction of Escherichia coli in Wheat Flour

  • Lee, Jeongmin;Park, Seul-Ki;Korber, Darren;Baik, Oon-Doo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권6호
    • /
    • pp.768-775
    • /
    • 2022
  • In this study we aimed to derive the response surface models for Escherichia coli reduction in wheat flour using atmospheric cold plasma (ACP) with three types of gas. The jet-type atmospheric cold plasma wand system was used with a 30 W power supply, and three gases (argon, air, and nitrogen) were applied as the treatment gas. The operating parameters for process optimization considered were wheat flour mass (g), treatment time (min), and gas flow rate (L/min). The wheat flour samples were artificially contaminated with E. coli at a concentration of 9.25 ± 0.74 log CFU/g. ACP treatments with argon, air, and nitrogen resulted in 2.66, 4.21, and 5.55 log CFU/g reduction of E. coli, respectively, in wheat flour under optimized conditions. The optimized conditions to reduce E. coli were 0.5 g of the flour mass, 15 min of treatment time, and 0.20 L/min of nitrogen gas flow rate, and the predicted highest reduction level from modeling was 5.63 log CFU/g.

Fungal Sterilization Using Microwave-Induced Argon Plasma at Atmospheric Pressure

  • Park, Jong-Chul;Park, Bong-Joo;Han, Dong-Wook;Lee, Dong-Hee;Lee, In-Seop;Hyun, Soon-O.;Chun, Moon-Sung;Chung, Kie-Hyung;Maki Ahiara;Kosuke Takatori
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.188-192
    • /
    • 2004
  • The main aim of this study was to investigate the sterilization effects of microwave-induced argon plasma at atmospheric pressure on paper materials contaminated with fungi. Plasma-treated filter papers showed no evidence to an unaided eye of burning or paper discoloration due to the plasma treatment. All fungi were perfectly sterilized in less than 1 sec, regardless of strains. These results indicate that this sterilization method for paper materials is easy to use, requires significantly less time than other traditional methods and different plasma sterilization methods, and is also nontoxic.

Controlled Formation of Surface Wrinkles and Folds on Poly (dimethylsiloxane) Substrates Using Plasma Modification Techniques

  • Nagashima, So;Hasebe, Terumitsu;Hotta, Atsushi;Suzuki, Tetsuya;Lee, Kwang-Ryeol;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.223-223
    • /
    • 2012
  • Surface engineering plays a significant role in fabricating highly functionalized materials applicable to industrial and biomedical fields. Surface wrinkles and folds formed by ion beam or plasma treatment are buckling-induced patterns and controlled formation of those patterns has recently gained considerable attention as a way of creating well-defined surface topographies for a wide range of applications. Surface wrinkles and folds can be observed when a stiff thin layer attached to a compliant substrate undergoes compression and plasma treatment is one of the techniques that can form stiff thin layers on compliant polymeric substrates, such as poly (dimethylsiloxane) (PDMS). Here, we report two effective methods using plasma modification techniques for controlling the formation of surface wrinkles and folds on flat or patterned PDMS substrates. First, we show a method of creating wrinkled diamond-like carbon (DLC) film on grooved PDMS substrates. Grooved PDMS substrates fabricated by a molding method using a grooved master prepared by photolithography and a dry etching process were treated with argon plasma and subsequently coated with DLC film, which resulted in the formation of wrinkled DLC film aligning perpendicular to the steps of the pre-patterned ridges. The wavelength and the amplitude of the wrinkled DLC film exhibited variation in the submicron- to micron-scale range according to the duration of argon plasma pre-treatment. Second, we present a method for controlled formation of folds on flat PDMS substrates treated with oxygen plasma under large compressive strains. Flat PDMS substrates were strained uniaxially and then treated with oxygen plasma, resulting in the formation of surface wrinkles at smaller strain levels, which evolved into surface folds at larger strain levels. Our results demonstrate that we can control the formation and evolution of surface folds simply by controlling the pre-strain applied to the substrates and/or the duration of oxygen plasma treatment.

  • PDF

Preparation of Boron Doped Fullerene Film by a Thermal Evaporation Technique using Argon Plasma Treatment and Its Electrochemical Application

  • Arie, Arenst Andreas;Jeon, Bup-Ju;Lee, Joong-Kee
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.127-130
    • /
    • 2010
  • Boron doped fullerene $C_{60}$ ($B:C_{60}$) films were prepared by the thermal evaporation of $C_{60}$ powder using argon plasma treatment. The morphology and structural characteristics of the thin films were investigated by scanning electron microscope (SEM), Fourier transform infra-red spectroscopy (FTIR) and x-ray photo electron spectroscopy (XPS). The electrochemical application of the boron doped fullerene film as a coating layer for silicon anodes in lithium ion batteries was also investigated. Cyclic voltammetry (CV) measurements were applied to the $B:C_{60}$ coated silicon electrodes at a scan rate of $0.05\;mVs^{-1}$. The CV results show that the $B:C_{60}$ coating layer act as a passivation layer with respect to the insertion and extraction of lithium ions into the silicon film electrode.

슈퍼박테리아 감염 치료를 위한 저전압 구동 플라즈마-온-칩 (Low Voltage Plasma-on-a-Chip for Inactivation of Superbacteria)

  • 임토우;황솔;김영민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1249-1250
    • /
    • 2015
  • We report a plasma-on-a-chip (POC) which provides a non-thermal atmospheric plasma for superbacteria infection treatment A three-electrode configuration allows an initiation carrier injection prior to a primary discharge, leading to a significant reduction in a breakdown voltage. A stable non-thermal argon plasma is generated using a pulsed glow discharge and inactivation of anti-biotic resistant bacteria, for example MRSA, is successfully demonstrated by exposing the bacteria to the argon plasma in a couple of minutes.

  • PDF

Effects of Plasma Treatment on the Reliability of a-IGZO TFT

  • Xin, Dongxu;Cui, Ziyang;Kim, Taeyong;Yi, Junsin
    • 한국전기전자재료학회논문지
    • /
    • 제34권2호
    • /
    • pp.85-89
    • /
    • 2021
  • High reliability thin film transistors are important factors for next-generation displays. The reliability of transparent a-IGZO semiconductors is being actively studied for display applications. A plasma treatment can fill the oxygen vacancies in the channel layer and the channel layer/insulating layer interface so that the device can work stably under a bias voltage. This paper studies the effect of plasma treatment on the performance of a-IGZO TFT devices. The influence of different plasma gases on the electrical parameters of device and its working reliability are reviewed. The article mentions argon, fluorine, hydrogen and several ways of processing in the atmosphere. Among these methods, F (fluorine) plasma treatment can maximize equipment reliability. It is expected that the presented results will form a basis for further research to improve the reliability of a-IGZO TFT.

$O_2$ : Ar 혼합가스 플라즈마로 ITO표면 처리한 OLED의 동작특성 향상과 표면개질에 관한 연구 (Plasma treatments of indium tin oxide(ITO) anodes in argon/oxygen to improve the performance and morphological property of organic light-emitting diodes(OLED))

  • 서유석;문대규;조남인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.67-68
    • /
    • 2008
  • A simple bi-layer structure of organic light emitting diode (OLED) was used to study the characteristics of anode preparation. Indium tin oxide (ITO) anode surface treatment of OLEDs was performed to get the optimum condition for the ITO anode. The ITO surface was treated by $O_2$ or $O_2$ / Ar mixed gas plasma with different processing time. The electrical characteristics of OLED were improved by plasma treatment. The operating voltage of OLED with $O_2$ or $O_2$/Ar mixed gas plasma treated anodes decreases from 8.2 to 3.4 V and 3.2V, respectively. The $O_2$ /Ar mixed gas plasma treatment results in better electrical property.

  • PDF

연속 대기압 플라즈마를 처리한 폴리에스테르 섬유의 표면 특성 (Surface-Properties of Poly(Ethylene Terephthalate) Fabric by In-line Atmospheric Plasma Treatments)

  • 권일준;박성민;구강;송병갑;김종원
    • 한국염색가공학회지
    • /
    • 제19권4호
    • /
    • pp.38-46
    • /
    • 2007
  • Surface properties of the plasma treated fabric were changed while maintaining its bulk properties. Surface of plasma treated fabric take charge of enhanced adhesion by surface etching, surface activity. The water repellency coating Poly(Ethylene Terephthalate) fabric was treated with atmospheric pressure plasma using various parameters such as Argon gas, treatment time, processing power. Morphological changes by atmospheric pressure plasma treatment were observed using field emmission scanning electron microscopy(FE-SEM) and the zeta-potential measurement, contact angle measurement equipment. At the atmospheric pressure plasma treatment time of 150 sec, the power of 800W, the best wettability and peel strength were obtained. And we confirmed the possibility of industrial application by using atmospheric plasma system.

대기압 플라즈마를 이용한 TiO2 광촉매의 효율향상을 위한 표면 개질 연구 (Surface Modification of TiO2 by Atmospheric Pressure Plasma)

  • 조상진;정충경;김성수;부진효
    • 한국진공학회지
    • /
    • 제19권1호
    • /
    • pp.22-27
    • /
    • 2010
  • $TiO_2$의 표면의 친수성을 증가시키기 위하여 dielectric barrier discharge (DBD)에 의해 발생된 대기압 플라즈마 (atmospheric pressure plasma: APP)를 이용 RF power 50~200 W 범위에서 Ar과 $O_2$ 가스를 사용 대기압 플라즈마로 광촉매 표면을 개질하였다. Ar 가스 단독으로 처리한 시료의 접촉각은 20도에서 10도로 감소하였으며, $O_2$ 가스를 반응성 가스로 하여 처리한 경우에는 접촉각이 20도에서 1도 미만으로 감소하였다. 동일한 RF power에서 $O_2$ 플라즈마 처리 시 더 낮은 접촉각을 확인하였는데, 이는 $TiO_2$ 표면과 산소원자의 결합으로 인하여 표면의 polar force의 증가에 의한 것으로 판단되어 대기압 플라즈마로 처리된 시료의 X-ray photoelectron spectroscopy (XPS)의 스펙트럼 분석결과 OH 작용기의 증가로 표면의 친수성이 증가됨을 확인하였다. 대기압 플라즈마로 처리된 시료와 처리하지 않은 시료의 접촉각은 모두 시간이 지남에 따라 증가하지만 플라즈마 처리 된 시료의 접촉각 증가는 플라즈마 처리하지 않은 시료의 접촉각 보다 작은 것을 확인하였다. 또한, 페놀 분해 실험을 통하여 플라즈마 표면처리를 통하여 $TiO_2$ 광촉매의 분해 효율이 크게 향상되는 것을 확인하였다.