• Title/Summary/Keyword: Argon addition

Search Result 106, Processing Time 0.027 seconds

The Influence of Carbonization Temperature and KOH Activation Ratio on the Microporosity of N-doped Activated Carbon Materials and Their Supercapacitive Behaviors

  • Son, Yeong-Rae;Heo, Young-Jung;Cho, Eun-A;Park, Soo-Jin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.267-275
    • /
    • 2018
  • A facile method for the preparation of nitrogen-doped microporous carbon via the pyrolysis of poly(vinylidene fluoride) (PVDF) using polypyrrole (PPy) as a selective nitrogen source was developed. A PVDF/PPy-800 sample (carbonized at $800^{\circ}C$) with a 1:0.5 ratio of PVDF and PPy exhibited the highest micropore volume. The activated microporous carbon materials obtained from PVDF/PPy-800 prepared at $800^{\circ}C$ with KOH possessed a large specific surface area and narrow pore-size distribution. They were characterized using $N_2$ adsorption at 77 K and argon (Ar) adsorption at 87 K, which allowed for the characterization of the narrow microporosity of the prepared materials due to the absence of interactions between Ar and the sample surface. In addition, the activated microporous carbon material with a KOH/carbon ratio of 2:1 was found to exhibit the largest specific surface area ($1296m^2g^{-1}$ in $N_2$ at 77 K) and microporosity, and a high specific capacitance ($122.8F\;g^{-1}$).

Preparation of Silicon Carbide Ceramic Thick Films by Liquid Process (액상공정을 이용한 탄화규소 세라믹 후막의 제조)

  • Kim, Haeng-Man;Kim, Jun-Su;Lee, Hong-Rim;Ahn, Young-Cheol;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.95-99
    • /
    • 2012
  • Silicon carbide ceramics are used for oxidation resistive coating films due to their excellent properties like high strength, good oxidation resistance, and good abrasion resistance, but they have poor formability and are prepared by vapor process which is complicated, costly, and sometimes hazardous. In this study, preparation of silicon carbide coating film by liquid process using polymer precursor was attempted. Coating film was prepared by dip coating on substrate followed by heat treatment in argon at $1200^{\circ}C$. By changing the dipping speed, the thickness was controlled. The effects of plasticizer, binder, or fiber addition on suppression of crack generation in the polymer and ceramic films were examined. It was found that fiber additives was effective for suppressing crack generation.

A Study on the Separation of Long-lived Radionuclides and Rare Earth Elements by a Reductive Extraction Process (환원추출에 의한 장수명핵종과 희토류 원소의 분리 연구)

  • 권상운;안병길;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.421-425
    • /
    • 2003
  • The reductive extraction process is an important step to refine the TRU product from the electrorefining process for the preparation of transmutation reactor fuel. In this study, it was studied on the reductive extraction between the eutectic salt and Bi metal phases. The solutes were zirconium and the rare earth elements, where zirconium was used as a surrogate for the transuranic(TRU) elements. All the experiments were performed in a glove box filled with a argon gas. Li-Bi alloy was used as a reducing agent to reduce the high chemical activity of Li. The reductive extraction characteristics were examined using ICP, XRD and EPMA analysis. The reduction reaction was equilibrated within 3 hours after the Li addition. Three eutectic salt systems were compared and Zr was successfully separated from the rare earth elements in all the three salt systems.

  • PDF

The Annealing Effect on Magnetocaloric Properties of Fe91-xYxZr9 Alloys

  • Kim, K.S.;Min, S.G.;Zidanic, J.;Yu, S.C.
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.133-136
    • /
    • 2007
  • We have carried out the study of magnetocaloric effect for as-quenched and annealed $Fe_{91-x}Y_xZr_9$ alloys. Samples were prepared by arc melting the high-purity elemental constituents under argon gas atmosphere and by single roller melt spinning. These alloys were annealed one hour at 773 K in vacuum chamber. The magnetization behaviours of the samples were measured by vibrating sample magnetometer. The Curie temperature increases with increasing Y concentration (x=0 to 8). Temperature dependence of the entropy variation ${\Delta}S_M$ was found to appear in the vicinity of the Curie temperature. The results show that annealed $Fe_{86}Y_5Zr_9$ and $Fe_{83}Y_8Zr_9$ alloys a bigger magnetocaloric effect than that those in as-quenched alloys. The value is 1.23 J/kg K for annealed $Fe_{86}Y_5Zr_9$ alloy and 0.89 J/kg K for as-quenched alloy, respectively. In addition, the values of ${\Delta}S_M$ for $Fe_{83}Y_8Zr_9$ alloy is 0.72 J/Kg K for as-quenched and 1.09 J/Kg K for annealed alloy, respectively.

Application of Methane Mixed Plasma for the Determination of Ge, As, and Se in Serum and Urine by ICP/MS

  • Park, Kyung-Su;Kim, Sun-Tae;Kim, Young-Man;Kim, Yun-je;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.285-290
    • /
    • 2003
  • An analytical method for the simultaneous determination of trace Ge, As and Se in biological samples by inductively coupled plasma/mass spectrometry has been investigated. The effects of added organic gas into the coolant argon gas on the analyte signal were studied to improve the detection limit, accuracy and precision. The addition of a small amount of methane (10 mL/min.) into the coolant gas channel improved the ionization of Ge, As and Se. The analytical sensitivity of the proposed Ar/CH₄system was superior by at least two-fold to that of the conventional Ar method. In the present method, the detection limits obtained for Ge, As and Se were 0.014, 0.012 and 0.064 ㎍/L, respectively. The analytical reliability of the proposed method was evaluated by analyzing the certified standard reference materials (SRM). Recoveries of 99.9% for Ge, 103% for As, 96.5% for Se were obtained for NIST SRM of freeze dried urine sample. The proposed method was also applied to the biological samples.

Sliding Wear of Alumina-silicon Carbide Nanocomposites

  • Kim, Seung-Ho;Lee, Soo-Wohn;Kim, Yun-Ho;Riu, Doh-Hyung;Tohru Sekino;Koichi Niihara
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1080-1084
    • /
    • 2001
  • Alumina-based nanocomposites have improved mechanical properties such as hardness, fracture toughness and fracture strength compared to monolithic ceramics. In this study, alumina with 5 vol% of nanosized SiC was sintered by a hot pressing technique at 1600$\^{C}$, 30 MPa for 1h in an argon gas atmosphere. Microstructures and mechanical properties in alumina-SiC nanocomposite were investigated. Moreover, tribological properties in air and water were compared each other. Relationships of wear properties with mechanical properties such as hardness, strength, and fracture toughness as well as microstructure were studied. Based on experimental results it was found that nanosized SiC retarded grain growth of matrix alumina. Mechanical properties such as hardness, fracture toughness and strength were improved by the addition of nanosized SiC in alumina. Improved mechanical properties resulted in increased sliding wear resistance. Tribological behavior of nanocomposites in water seemed to be governed by abrasive wear.

  • PDF

Preparation of Silicon Carbide with Sialon (시알론을 첨가한 탄화규소 세라믹스의 제조)

  • Lee, J.K.;Park, J.G.;Lee, E.G.;Kim, H.
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.247-255
    • /
    • 2000
  • Silicon carbide with sialon was prepared by hot pressing and transient liquid-phase sintering, and the effects of sintering atmosphere and starting phases on their microstructural characteristics were investigated. The sintered SiC with Sialon composition(Y2O3, AlN, Si3N4) in argon atmosphere had high sintered density and large aspect ratio. But sintered specimens in nitrogen atmosphere showed low aspect ratio and small grian size, becuase of the retardation of phase transformation and grain growth. Addition of Y-Sialon powder to SiC also retarded the phase transformation to ${\alpha}$-SiC from ${\beta}$-SiC and densification. The SiC specimen prepared from the starting ${\beta}$-SiC powder with Sialon composition(Y2O3, AlN, Si3N4) showed the highest fracture toughness about 6.0 MPa$.$m1/2.

  • PDF

Pressure-Temperature Diagram of Critical Condition for Disproportionation of Nd-Fe-B Alloy in Hydrogen

  • Kwon, H.W.;Kim, D.H.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.155-158
    • /
    • 2010
  • The HDDR (hydrogenation, disproportionation, desorption, and recombination) process can be used as an effective way of converting a no coercivity Nd-Fe-B ingot material, with a coarse $Nd_2Fe_{14}B$ grain structure, to a highly coercive one with a fine grain structure. Careful control of the HDDR process can lead to an anisotropic powder with good $Nd_2Fe_{14}B$ grain texture; the most critical step for inducing texture is disproportionation. The critical conditions (hydrogen pressure and temperature) for the disproportionation reaction of fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ (x = 0 or 0.3, y = 0 or 0.2) alloys, in different atmospheres of pure hydrogen and a mixed gas of hydrogen and argon, was investigated with TPA (thermopiezic analyser). From this, the hydrogen pressure-temperature diagram showing the critical conditions was established. The critical disproportionation temperature of the fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ alloys was slightly increased as the hydrogen pressure decreased in both pure hydrogen and mixed gas. The critical disproportionation temperature of the hydrogenated alloys was higher in the mixed gas than in pure hydrogen. Addition of Ga and Nb increased the critical disproportionation temperature of the fully hydrogenated Nd-Fe-B alloys.

Collective effect of hydrogen in argon and Mg as ambiance for the heat treatment on MgB2

  • Sinha, B.B.;Jang, S.H.;Chung, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.24-28
    • /
    • 2014
  • Magnesium diboride superconductor is still of considerable interest because of its appealing characteristics towards application mainly at around 20 K. Unlike Nb-based superconductors, $MgB_2$ can be operated by cryogen-free cooler which provides a cost effective alternative at low field of around 2-5 T. To explore this operating field region considerable efforts are necessary to marginally improve the superconducting properties of $MgB_2$. Under this situation, even the heat treatment environment during the synthesis is considered as an important factor. The addition of $H_2$ gas in small amount with Ar as a mixed gas during annealing has an adverse effect on the superconducting properties of $MgB_2$. It is although interesting to find that the presence of Mg vapor along with hydrogen during heat treatment results in the appreciable improvement in the flux pinning and the overall response of the critical current density for the ex-situ $MgB_2$ samples.

Synthesis of Water-Dispersible Maghemite Nanocrystals using 6-Aminohexanoic Acid as a Capping Agent (6-Aminohexanoic Acid를 이용하여 물에 분산되는 Maghemite 나노입자의 합성)

  • Yu, Taekyung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.403-406
    • /
    • 2013
  • This paper describes a simple route to synthesis of water-dispersible monodisperse maghemite (${\gamma}-Fe_2O_3$) nanocrystals using 6-aminohexanoic acid (AHA) as a stabilizer. The water-dispersible ${\gamma}-Fe_2O_3$ nanocrystals with an average size of 5 nm were obtained simply by addition of $Fe(CO)_5$ into an octyl ether solution containing AHA at $195^{\circ}C$ under argon condition. As-prepared AHA coated ${\gamma}-Fe_2O_3$ nanocrystals exhibited highly crystallinity and magnetic property while keeping a good dispersity in an aqueous phase. We also obtained water-dispersible AHA coated ${\gamma}-Fe_2O_3$ nanocrystals using ligand-exchange method, demonstrating that AHA can be a good candidate for preparing water-dispersible uniform metal oxide nanocrystals.