• 제목/요약/키워드: Argon Control

검색결과 69건 처리시간 0.029초

중합방법에 따른 복합레진 인레이의 물리적 성질에 관한 연구 (A STUDY ON THE PHYSICAL PROPERTIES OF A COMPOSITE RESIN INLAY BY CURING METHODS)

  • 조성아;조영곤;문주훈;오행진
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.254-266
    • /
    • 1997
  • This study was to know the usefulness of argon laser for composite resin, to prove the polymerized effect of heat treatment of composite resin inlay and to get the curing method for optimal physical properties of composite resin inlay. In this study we used four light curing units and one heat curing unit: Visilux $II^{TM}$, a visible light gun: $SPECTRUM^{TM}$, an argon laser: Unilux AC$^{(R)}$ and Astorn XL$^{(R)}$, visible light curing unit: CRC-$100^{TM}$ for heat treatment. Compared to a control group, we divided the experemental groups into five as follows: Control group: Light curing(Visilux $II^{TM}$) Experimental group 1 : Light curing(Visilux $II^{TM}$) + Light curing(Unilux AC$^{(R)}$) Experimental group 2: Light curing(Visilux $II^{TM}$) + Light curing(Astron XL$^{(R)}$) + Heat treatment(CRC-$100^{TM}$) Experimental group 3 : Laser curing($SPECTRUM^{TM}$) Experimental group 4 : Laser curing($SPECTRUM^{TM}$) + Light curing(Unilux AC$^{(R)}$) Experimental group 5 : Laser curing($SPECTRUM^{TM}$) + Light curing(Astron XL$^{(R)}$) + Heat treatment (CRC-$100^{TM}$) According to the above classification, we made samples through the curing of Clearfil CR Inlay$^{(R)}$, which is a composite resin for inlay, in a separable cylindrical metal mold and polycarbonate plate. And then, we measured and compared the value of compressive strength, diametral tensile strength and the surface micro hardness of each sample. The results were as follows : 1. Among the experimental groups, group 5 showed the highest value of compressive strength, $157.50{\pm}10.24$ kgf and control group showed the lowest value of compressive strength, $103.93{\pm}21.93$ kgf. Control group showed significant difference with the experimental groups(p<0.001). Group 2 which was treated by the heat showed higher compressive strength than that of group 1 which was not, and there was significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was significant difference group 4 and group 5(p<0.001). 2. Among the experimental groups, group 5 showed the highest value of diametral tensile strength, $95.84{\pm}1.97$ kgf and control group showed the lowest value of diametral tensile strength, $81.80{\pm}2.17$ kgf. Control group which was cured by visible light showed higher diametral tensile strength than group 3 which was cured Argon Laser. Group 2 which was treated by heat showed higher compressive strength than that of group 1 which was not, and there was significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was a significant difference group 4 and group 5(p<0.001). 3. Among the experimental groups, group 5 showed the highest value of microhardness of top surface, $148.42{\pm}9.57$ kgf and control group showed the lowest value of microhardness, $111.43{\pm}7.63$ kgf. In the case of bottom surface, group 5 showed the highest value of $146.19{\pm}7.62$ kgf, and control group showed the lowest, $104.03{\pm}11.05$ kgf. Group 3 which was cured by Argon Laser showed higher diametral tensile strength than control group which was cured only with a visible light gun. Group 2 which was treated by heat showed higher compressive strength than that of group 1 which was not, and there was a significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was a significant difference group 4 and group 5(p<0.001). 4. According to the above results, we took a conclusion that argon laser can be used as a useful unit for curing the composite resin and heat treatment can improve the physical properties of the composite resin inlay.

  • PDF

RTP를 사용한 타이타늄 실리사이드 형성의 공정 조절 (Process Control of Titanium Silicide Formation Using RTP)

  • 이용재
    • 한국통신학회논문지
    • /
    • 제15권5호
    • /
    • pp.399-405
    • /
    • 1990
  • 急速 熱處理 공정을 高融點 타이타늄 실리사이드 형성을 위한 反應率의 연구와 정확한 形成 調節에 이용하였다. 試料는 n형 실리콘과 다결정 웨이퍼이며, 타이타늄을 스퍼터로 증착시켰다. 工程은 질소와 아르곤 가스 분위기 下에 실리사이드 형성을 정확하게 조절하기 위해 急速 時間 溫度 분포의 行列로 수행하였다. 반응된 박막은 面抵抗 측정과 전자현미경 사진, 自動分 抛抵抗 측정, X-선 回折 등으로 分析하였다. 結果는 실리사이드의 抵抗度는 20$\mu$$\Omega$-cm이하 이고, 박막 두께는 타이타늄 燕着 의 두께보다 약 2배로 나타났다. 실리사이드 形成 분위기는 아르곤과 窒素가 同一한 溫度 時間 조건에서 形成되었다.

  • PDF

이중 결정립 구조 1%Si-Al 금속선에 의한 Migration 수명의 개선 (Improvement of Migration Lifetime by Dual-sized Grain Structure in 1% Si-Al Metal Line)

  • 김영철;김철주
    • 전자공학회논문지A
    • /
    • 제30A권6호
    • /
    • pp.1-7
    • /
    • 1993
  • After the 1%S-Al metal is deposited, a thin oxide is formed thereon. Then, a single charged Argon(Ar$^{+}$) is ion implanted into the oxide layer, thereby causing the metal grain in the upper surface of the metal layer to become amorphous. Consequently, the grain size will be reduced and the rough surface of the metal layer flattened. However, the remainder of the metal layer beneath the upper surface thereof will still exhibit large grain size and low resistance, because the Argon ion is only implanted to characterized by a dual-sized grain structure which served to reduce interlayer stress, thereby decreasing the rate of stress migration, and to lower the resistivity of the metal line, thereby enhancing the electromigration characteristic thereof. Experiments have shown that the metal line exhibits a metal migration rate which is approximately 700% less than the control group and a standard deviation which is approximately 200% less than these group.p.

  • PDF

저산소 농도 살충 챔버 시스템 시제작 및 박물관 해충 살충 성능 평가 (Trial Manufacture and Disinfection Evaluation of Anoxic Chamber System for Museum Insects)

  • 오준석;최정은;이장묵
    • 보존과학회지
    • /
    • 제28권4호
    • /
    • pp.377-385
    • /
    • 2012
  • 박물관에서 문화재 해충의 살충을 위해 사용되어 온 메틸브로마이드는 오존층 파괴물질로써 2015년 사용이 금지됨에 따라 대체법으로써 아르곤이나 질소를 사용한 저산소 농도 살충법이 도입되었다. 국립민속박물관에서는 국내 최초로 저산소 농도 살충법의 적용이 가능한 저산소 농도 살충 챔버 시스템을 시제작하여 설치하였다. 저산소 농도 살충 챔버 시스템은 챔버 내부 용량이 $0.5m^3$이며, 아르곤, 질소, 이산소탄소의 사용이 가능하다. 이 시스템은 산소 농도 0.01~20%, 온도 $10{\sim}50^{\circ}C$, 습도 30~80%를 자동적으로 제어가 가능하며, 산소 농도 제어는 설정값 이상으로 상승할 때마다 가습 가스와 건조 가스를 혼합하여 주입하는 방법을 채택하였다. 시운전을 위해 30일 동안 가동 결과, 산소 농도, 온도 및 습도가 일정하게 유지되었다. 그리고 권연벌레 애벌레와 성충, 애알락수시렁이 애벌레 대해 아르곤 가스를 사용하여 산소 농도 0.01%, 온도 $25^{\circ}C$ 및 습도 50% 환경에서 살충 성능을 평가한 결과, 권연벌레 성충은 3~5일, 애벌레는 7일, 애알락수시렁이 애벌레는 3일이 소요되어, 시제작된 저산소 농도 살충 챔버 시스템의 살충 성능을 확인할 수 있었다. 평가 결과로부터 저산소 농도 살충 챔버 시스템은 박물관에서 메틸브로마이드 대체법인 저산소 농도 살충법의 기술을 개발하는데 충분히 활용이 가능함을 확인하였다.

$\mu$-processor를 이용한 폐쇄사이클 디젤추진시스템의 모니터링 및 제어모델에 관한 연구 (A Study of Monitoring and Control Model of Closed Cycle Diesel Propulsion System using Microprocessor)

  • 유춘식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.894-905
    • /
    • 2004
  • The closed cycle diesel propulsion system is free from the problem of the intake air, exhaust gas and their control that are associated with the conventional diesel propulsion system. The system is composed of a main engine, an exhaust cooler. a $CO_2$ scrubber and a $O_2$ mixer. In this paper, a hardware using microprocessor is proposed in order to monitor and control the oxygen and ratio of specific heat for underwater diesel propulsion system. Also simulation is carried out to ascertain the performance of proposed system.

Magnesium Thin Films Possessing New Corrosion Resistance by RF Magnetron Sputtering Method

  • Lee, M.H.;Yun, Y.S.;Kim, K.J.;Moon, K.M.;Bae, I.Y.
    • Corrosion Science and Technology
    • /
    • 제3권4호
    • /
    • pp.148-153
    • /
    • 2004
  • Magnesium thin flims were prepared on cold-rolled steel substrates by RF magnetron sputtering technique. The influence of argon gas pressure and substrate bias voltage on their crystal orientation and morphology of the coated films were investigated by scanning electron microscopy (SEM) and X-ray diffraction, respectively. And the effect of crystal orientation and morphology of magnesium films on corrosion behaviors was estimated by measuring anodic polarization curves in deaerated 3%NaCl solution. From the experimental results, all the sputtered magnesium films showed obviously good corrosion resistance to compare with 99.99% magnesium target of the sputter-evaporation metal. Finally it was shown that the Corrosion-resistance of magnesium films can be improved greatly by controlling the crystal orientation and morphology with effective use of the plasma sputtering technique.

Simultaneous Control of Phase Transformation and Crystal of Amorphous TiO2 Coating on MWCNT Surface

  • Cha, Yoo Lim;Park, Il Han;Moon, Kyung Hwan;Kim, Dong Hwan;Jung, Seung Il;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.618-624
    • /
    • 2018
  • We developed a mass production method that simultaneously controls the phase transformation and crystal size of $TiO_2$ coatings on multiwalled carbon nanotubes (MWCNTs). Initially, MWCNTs were successfully coated with amorphous 15-20-nm-thick $TiO_2$ by an in-situ sol-gel method. As the calcination temperature increased in both air and argon atmospheres, the amorphous $TiO_2$ was gradually transformed into the fully anatase phase at approximately $600^{\circ}C$, a mixture of the anatase and rutile phases at approximately $700^{\circ}C$, and the fully rutile phase above approximately $800^{\circ}C$. The crystal size increased with increasing calcination temperature. Moreover, above $600^{\circ}C$, the size of crystals formed in air was approximately twice that of crystals formed in argon. The reason is thought to be that MWCNTs, which continuously supported the stresses associated with the reconstructive phase transformation, disappeared owing to complete oxidation in air at these high temperatures.

인산염계 $SiO_2$ 주형재와 치과주조용 Ti-Zr-(Cu)계 합금의 계면반응 (Surface Reaction between Phosphate bonded $SiO_2$ Investment and Ti-Zr-(Cu) based Alloys for Dental castings)

  • 주규지
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.57-63
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. To investigate the surface reaction layers produced by the reaction with mold materials and the influence of the reaction layers on the hardness of castings, A phosphate bonded $SiO_2$ base investment was used as mold material, and microstructure observation and hardness test were performed. The surface reaction layers of Ti-13%Zr and Ti-13%Zr-5%Cu alloys were thinner than that of CP Ti had a clearly multiple structure. A difference of the hardness between surface and inner of the Ti-13%Zr and Ti-13%Zr-5%Cu alloys became less than that of CP Ti. From the results, it was found that the Ti-Zr-(Cu) based alloys were possible to cast with $SiO_2$ base investment without the great changes of mechanical properties of the castings.

  • PDF

Effect of CrN barrier on fuel-clad chemical interaction

  • Kim, Dongkyu;Lee, Kangsoo;Yoon, Young Soo
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.724-730
    • /
    • 2018
  • Chromium and chromium nitride were selected as potential barriers to prevent fuel-clad chemical interaction (FCCI) between the cladding and the fuel material. In this study, ferritic/martensitic HT-9 steel and misch metal were used to simulate the reaction between the cladding and fuel fission product, respectively. Radio frequency magnetron sputtering was used to deposit Cr and CrN films onto the cladding, and the gas flow rates of argon and nitrogen were fixed at certain values for each sample to control the deposition rate and the crystal structure of the films. The samples were heated for 24 h at 933 K through the diffusion couple test, and considerable amount of interdiffusion (max. thickness: $550{\mu}m$) occurred at the interface between HT-9 and misch metal when the argon and nitrogen were used individually. The elemental contents of misch metal were detected at the HT-9 through energy dispersive X-ray spectroscopy due to the interdiffusion. However, the specimens that were sputtered by mixed gases (Ar and $N_2$) exhibited excellent resistance to FCCI. The thickness of these CrN films were only $4{\mu}m$, but these films effectively prevented the FCCI due to their high adhesion strength (frictional force ${\geq}1,200{\mu}m$) and dense columnar microstructures.

극저온(20K) 수소동위원소 흡착 등온선의 온도 변화에 대한 자동 저온 부피 교정 (Automated Cold Volume Calibration of Temperature Variation in Cryogenic Hydrogen Isotope Sorption Isotherm)

  • 박재우;오현철
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.336-341
    • /
    • 2019
  • The gas adsorption isotherm requires accurate measurement for the analysis of porous materials and is used as an index of surface area, pore distribution, and adsorption amount of gas. Basically, adsorption isotherms of porous materials are measured conventionally at 77K and 87K using liquid nitrogen and liquid argon. The cold volume calibration in this conventional method is done simply by splitting a sample cell into two zones (cold and warm volumes) by controlling the level sensor in a Dewar filled with liquid nitrogen or argon. As a result, BET measurement for textural properties is mainly limited to liquefied gases (i.e. $N_2$ or Ar) at atmospheric pressure. In order to independently investigate other gases (e.g. hydrogen isotopes) at cryogenic temperature, a novel temperature control system in the sample cell is required, and consequently cold volume calibration at various temperatures becomes more important. In this study, a cryocooler system is installed in a commercially available BET device to control the sample cell temperature, and the automated cold volume calibration method of temperature variation is introduced. This developed calibration method presents a reliable and reproducible method of cryogenic measurement for hydrogen isotope separation in porous materials, and also provides large flexibility for evaluating various other gases at various temperature.