• 제목/요약/키워드: Arg (B31)-insulin

검색결과 2건 처리시간 0.019초

Recombinant Glargine Insulin Production Process Using Escherichia coli

  • Hwang, Hae-Gwang;Kim, Kwang-Jin;Lee, Se-Hoon;Kim, Chang-Kyu;Min, Cheol-Ki;Yun, Jung-Mi;Lee, Su Ui;Son, Young-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1781-1789
    • /
    • 2016
  • Glargine insulin is a long-acting insulin analog that helps blood glucose maintenance in patients with diabetes. We constructed the pPT-GI vector to express prepeptide glargine insulin when transformed into Escherichia coli JM109. The transformed E. coli cells were cultured by fed-batch fermentation. The final dry cell mass was 18 g/l. The prepeptide glargine insulin was 38.52% of the total protein. It was expressed as an inclusion body and then refolded to recover the biological activity. To convert the prepeptide into glargine insulin, citraconylation and trypsin cleavage were performed. Using citraconylation, the yield of enzymatic conversion for glargine insulin increased by 3.2-fold compared with that without citraconylation. After the enzyme reaction, active glargine insulin was purified by two types of chromatography (ion-exchange chromatography and reverse-phase chromatography). We obtained recombinant human glargine insulin at 98.11% purity and verified that it is equal to the standard of human glargine insulin, based on High-performance liquid chromatography analysis and Matrix-assisted laser desorption/ionization Time-of-Flight Mass Spectrometry. We thus established a production process for high-purity recombinant human glargine insulin and a method to block Arg (B31)-insulin formation. This established process for recombinant human glargine insulin may be a model process for the production of other human insulin analogs.

Biochemical Characterization of Serine Proteases with Fibrinolytic Activity from Tenodera sinensis (Praying Mantis)

  • Kim, Yeong-Shik;Hahn, Bum-Soo;Cho, So-Yean;Chang, Il-Moo
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.97-104
    • /
    • 2001
  • Three types of proteases (MEF-1, MEF-2 and MEF-3) were purified from the egg cases of Ten-odera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The proteases were assessed homogeneous by SDS-polyacrylamide gel electrophoresis and have molecular weight of 31,500, 32,900 and 35,600 Da, respectively. The N-terminal regions of the primary structure were compared and they were found to be different each other. MEFs readily digested the $A\alpha$ - and B$\beta$-chains of fibrinogen and more slowly the ${\gamma}$-chain. The action of the enzymes resulted in extensive hydrolysis of fibrinogen and fibrin, releasing a variety of fibrinopeptides. MEF-1 was inactivated by Cu$^{2+}$ and Zn$^{2+}$ and inhibited by PMSF and chymostatin. MEF-2 was inhibited by PMSF, TLCK. soybean trypsin inhibitor. MEF-3 was only inhibited by PMSF and chymostatin. Antiplasmin was not sensitive to MEF-1 but antithrombin III inhibited the enzymatic activity qf MEF-1. MEF-2 specifically bound to anti plasmin Among the chromogenic protease substrates, the most sensitive one to the hydrolysis of MEFs was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 3$0^{\circ}C$. MEF-1 preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. In contrast, MEF-2 specifically cleaved the peptide bond between Arg23 and Gly24. D-dimer concentrations increased on incubation of cross-linked fibrin with MEF-1, indicating the enzyme has a strong fibrinolytic activity.ity.

  • PDF