• Title/Summary/Keyword: Areal Analysis

Search Result 230, Processing Time 0.028 seconds

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis (열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석)

  • Shim, Byoung Ohan;Park, Chan-Hee;Cho, Heuy-Nam;Lee, Byeong-Dae;Nam, Yujin
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.

Ecology of the Macrozoobenthos in Chinhae Bay, Korea 3. Community Structure (진해만 저서동물의 군집생태 3. 군집구조)

  • LIM Hyun-Sig;HONG Jae-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.175-187
    • /
    • 1997
  • Benthic community structure was studied in Chinhae Bay during 3 years from June 1987 to May 1990, based on the samples from 12 stations on the seasonal, bimonthly or monthly basis (lim and Hong, 1994a, b). A total of 287 species was sampled with mean density of $1045.5\;ind./m^2$ and biomass of $98.48g/m^2$ during studyperiods. Of these species, there were 91 species of crustaceans $(31.7\%)$, 88 of polychaetes $(30.7\%)$, 56 of molluscs $(19.5\%)$, 22 of echinoderms and 30 of the micellaneous species. Polychaetes were density-dominant faunal group with a density of $824.7\;ind./m^2$, comprising of $18.6\%$ of the total density of the benthic animals. It was followed by molluscs with $14.62\;ind./m^2$ $($14.4\%\;of\;the\;total\;density)$ crustaceans with $50.5\;ind/m^2\;(4.6\%)$ and echinoderms with $13.4\;ind/m^2\;(4.6\%)$. Molluscs were the biomass-dominant faunal group with a mean biomass of $54.62\;g/m^2$. It was followed by polychaetes with $21.74\;g/m^2$ and echinoderms with $6.66\;g/m^2$. Based on community analysis, species richness, diversity and evenness showed decreasing trends toward the inner bay from outer stations, whereas dominance showed increasing. The three most dominant species Lumbrineris longifolia, Paraprionospio pinnata and Theora fragilis had densities over $40\%$ of the total density of benthic organisms in Chinhae Bay. Seasonal changes of benthic communities in the inner bay were high compared to those of the outer bay. It was mainly due to the occurrence of hypoxic condition in the inner area of the bay. Cluster analysis showed that the benthic community could be divided into four stational groups, that is, Group 1, the innermost area, which received the most heavy anthropogenic effects including seawage and waste water, Group II, the central area of the bay, Group III, the transitional area, Group IV, the mouth pan of the bay exposed to the open sea. The areal groups based on the environmental factors coincided with the zonal groups from the species composition. This fact suggests that the overall spatial distribution of macrobenthos in Chinhae Bay was controlled by the sediment organic carbon content of the bay.

  • PDF

Evaluation of Health Impact of Heat Waves using Bio-Climatic impact Assessment System (BioCAS) at Building scale over the Seoul City Area (생명기후분석시스템(BioCAS)을 이용한 폭염 건강위험의 검증 - 서울시 건물규모를 중심으로 -)

  • Kim, Kyu Rang;Lee, Ji-Sun;Yi, Chaeyeon;Kim, Baek-Jo;Janicke, Britta;Holtmann, Achim;Scherer, Dieter
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.514-524
    • /
    • 2016
  • The Bio-Climatic impact Assessment System, BioCAS was utilized to produce analysis maps of daily maximum perceived temperature ($PT_{max}$) and excess mortality ($r_{EM}$) over the entire Seoul area on a heat wave event. The spatial resolution was 25 m and the Aug. 5, 2012 was the selected heat event date. The analyzed results were evaluated by comparing with observed health impact data - mortality and morbidity - during heat waves in 2004-2013 and 2006-2011,respectively. They were aggregated for 25 districts in Seoul. Spatial resolution of the comparison was equalized to district to match the lower data resolution of mortality and morbidity. Spatial maximum, minimum, average, and total of $PT_{max}$ and $r_{EM}$ were generated and correlated to the health impact data of mortality and morbidity. Correlation results show that the spatial averages of $PT_{max}$ and $r_{EM}$ were not able to explain the observed health impact. Instead, spatial minimum and maximum of $PT_{max}$ were correlated with mortality (r=0.53) and morbidity (r=0.42),respectively. Spatial maximum of $PT_{max}$, determined by building density, affected increasing morbidity at daytime by heat-related diseases such as sunstroke, whereas spatial minimum, determined by vegetation, affected decreasing mortality at nighttime by reducing heat stress. On the other hand, spatial maximum of $r_{EM}$ was correlated with morbidity (r=0.52) but not with mortality. It may have been affected by the limit of district-level irregularity such as difference in base-line heat vulnerability due to the age structure of the population. Areal distribution of the heat impact by local building and vegetation, such as spatial maximum and minimum, was more important than spatial mean. Such high resolution analyses are able to produce quantitative results in health impact and can also be used for economic analyses of localized urban development.

Foundational Research on the Market Strategies and Current Status of Children's Indoor Theme Parks with Korean Characters as Their Theme (국산 캐릭터를 테마로 한 어린이 실내 테마파크의 현황 및 시장전략에 관한 기초연구)

  • Park, Seong-Sik
    • Cartoon and Animation Studies
    • /
    • s.28
    • /
    • pp.235-263
    • /
    • 2012
  • Regarding the theme park business as an area of cultural content business, this study focuses on the trend of pursuing indoor theme parks as a small-scale small capital strategy escaped from the existing approach oriented to large-scale outdoor complex theme parks. It is because although existing large-scale outdoor complex theme parks require the capital with the scale of hundreds of billion won and also high-level technique and the latest operational know-how that they have a great barrier for new entry as well as enormous risk, the rent indoor theme parks succeed in market entry with efficient risk management and flexible market strategies. Thereupon, this study examines the current status of the children's indoor theme park market with Korean characters as their theme as a new market among the indoor theme parks and also investigates the market strategies of this market in the two aspects of expansion: the expansion of Korean characters' property value and the expansion of the local theme park market. For that, this article reviewed the advanced researches on theme parks and divided the types of theme parks existing in Korea with the criteria of classification by space and theme or classification by main users. Also, among the children's indoor theme parks with Korean characters as their theme, this study visited five ones located in the capital area to examine the current status. And about two located in the capital area and also four in the local area, the current data were received from the persons in charge of the companies for analysis. Also, with the subjects of spectators visiting the 'DIBO VILLAGE, Cheonggye-cheon' newly opened on April 25th, 2012, the research on satisfaction was conducted for analysis. Through that, this study analyzed the structure of the existing children's indoor theme park business with Korean characters as their theme and suggested the ground to analyze the effectiveness of market strategies being implemented. It is expected that this study will establish the clues of systematic and profound discussion for the indoor theme park business that can be said to be the niche market of the theme park business and allow the small-scale areal indoor theme parks to be examined as a significant business model for the local theme park industry. In the aspect of character business as well, it is expected that this will give a chance to establish a new model of spatial storytelling expansion in terms of the property value of Korean animation characters.

A Survey on Attitudes Toward Science and Science Teaching Among the Secondary School Science Teachers (과학(科學)과 과학교육(科學敎育)에 대한 중등과학교사(中等科學敎師)의 태도(態度) 조사연구(調査硏究))

  • Pak, Sung-Jae;Lee, Hi-Sung
    • Journal of The Korean Association For Science Education
    • /
    • v.4 no.1
    • /
    • pp.1-14
    • /
    • 1984
  • The student's attitude toward science is generally influenced by their teachers. Therefore, teachers' positive attitudes toward science and science teaching play an important role to change the student's attitude toward science. The purpose of this survey is to investigate the status on attitudes toward science and science teaching among the secondary school science teachers in Korea. The attitudes were surveyed by the questionnaire which was developed by Sung-Jae Pak. The instrument is designed to use Likert type scale and is composed of two kinds of scale: one is the attitudes toward science scale (the AT scale) and the other is the attitudes toward science teaching scale (the AT Kale), which contains 24 questions respectively. Each of them has 6 sub-level areas. The six areas of attitude toward science are as follow: The goals and values, process and method of science, knowledge and the view of nature, social and cultural aspects, scientist and a career in science, the preferences and willingness. The six areas of attitude toward science teaching are as follow: The goals and values, process and method of science teaching, the content and structure, social and cultural aspects, science educator and a career in science teaching, satisfaction and willingness. From 152 teachers' responses, the tendency of total as well as each area and the contrast of their backgrounds at the level of 5% significance were analyzed by SPSS computer program. Some results and conclusion of the study are as follow: 1. The overall attitude of the measured secondary school science teachers shows a positive trend tendency. Also total positive attitude toward science teaching are slightly higher than that of science, which support the fact that the teachers are not scientists but they are directly involved in teaching of science. 2. The attitudes toward science are moderately correlated to the attitudes toward science teaching (r=0.52). 3. The areas of knowledge, nature-view and tile area of social aspects of science show a very negative tendency. Also the two areas are not correlated to some other areal at the level at 5% significance. 4. Female science teachers exhibit just a little more positive attitudes than those of male teachers in science teaching. 5. The science teachers who wanted to have a profession of scholar or educator exhibit a little more positive attitudes than others in science and total attitudes (AS+AT). 6. The more the science teachers have "intellectual delights" the more their attitudes toward science and science teaching are positive. 7. At the level of 5% significance, there are differences which college they graduated from, but there are no differences in multiple comparison at 10% level. 8. The differences in their background dose not appear in such as age; teaching career; academic career; deny the superstition; their onlook for the scientist or educator when they were freshmen; major the basic science; opinions about the U.F.O. and the origin of life. 9. The responses of certain individual statement are quite different from the overall tendencies, which strongly suggest the de1ailed analysis and deeper study. For the continuing study, it is recommendable to revile the measuring tools with the theoretical study for the better validity and reliability, and investigate the status of the attitudes toward science and science teaching among the science teachers with sufficient samples.

  • PDF

Effect and uncertainty analysis according to input components and their applicable probability distributions of the Modified Surface Water Supply Index (Modified Surface Water Supply Index의 입력인자와 적용 확률분포에 따른 영향과 불확실성 분석)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Oh, Ji Hwan;Jo, Joon Won
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.475-488
    • /
    • 2017
  • To simulate accurate drought, a drought index is needed to reflect the hydrometeorological phenomenon. Several studies have been conducted in Korea using the Modified Surface Water Supply Index (MSWSI) to simulate hydrological drought. This study analyzed the limitations of MSWSI and quantified the uncertainties of MSWSI. The influence of hydrometeorological components selected as the MSWSI components was analyzed. Although the previous MSWSI dealt with only one observation for each input component such as streamflow, ground water level, precipitation, and dam inflow, this study included dam storage level and dam release as suitable characteristics of the sub-basins, and used the areal-average precipitation obtained from several observations. From the MSWSI simulations of 2001 and 2006 drought events, MSWSI of this study successfully simulated drought because MSWSI of this study followed the trend of observing the hydrometeorological data and then the accuracy of the drought simulation results was affected by the selection of the input component on the MSWSI. The influence of the selection of the probability distributions to input components on the MSWSI was analyzed, including various criteria: the Gumbel and Generalized Extreme Value (GEV) distributions for precipitation data; normal and Gumbel distributions for streamflow data; 2-parameter log-normal and Gumbel distributions for dam inflow, storage level, and release discharge data; and 3-parameter log-normal distribution for groundwater. Then, the maximum 36 MSWSIs were calculated for each sub-basin, and the ranges of MSWSI differed significantly according to the selection of probability distributions. Therefore, it was confirmed that the MSWSI results may differ depending on the probability distribution. The uncertainty occurred due to the selection of MSWSI input components and the probability distributions were quantified using the maximum entropy. The uncertainty thus increased as the number of input components increased and the uncertainty of MSWSI also increased with the application of probability distributions of input components during the flood season.

Characteristics of Vertical Ozone Distributions in the Pohang Area, Korea (포항지역 오존의 수직분포 특성)

  • Kim, Ji-Young;Youn, Yong-Hoon;Song, Ki-Bum;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.287-301
    • /
    • 2000
  • In order to investigate the factors and processes affecting the vertical distributions of ozone, we analyzed the ozone profile data measured using ozonesonde from 1995 to 1997 at Pohang city, Korea. In the course of our study, we analyzed temporal and spatial distribution characteristics of ozone at four different heights: surface (100m), troposphere (10km), lower stratosphere (20km), and middle stratosphere (30km). Despite its proximity to a local, but major, industrial complex known as Pohang Iron and Steel Co. (POSCO), the concentrations of surface ozone in the study area were comparable to those typically observed from rural and/or unpolluted area. In addition, the findings of relative enhancement of ozone at this height, especially between spring and summer may be accounted for by the prevalence of photochemical reactions during that period of year. The temporal distribution patterns for both 10 and 20km heights were quite compatible despite large differences in their altitudes with such consistency as spring maxima and summer minima. Explanations for these phenomena may be sought by the mixed effects of various processes including: ozone transport across two heights, photochemical reaction, the formation of inversion layer, and so on. However, the temporal distribution pattern for the middle stratosphere (30km) was rather comparable to that of the surface. We also evaluated total ozone concentration of the study area using Brewer spectrophotometer. The total ozone concentration data were compared with those derived by combining the data representing stratospheric layers via Umkehr method. The results of correlation analysis showed that total ozone is negatively correlated with cloud cover but not with such parameter as UV-B. Based on our study, we conclude that areal characteristics of Pohang which represents a typical coastal area may be quite important in explaining the distribution patterns of ozone not only from surface but also from upper atmosphere.

  • PDF

Community Structure of the Macrobenthos in the Soft Bottom of Youngsan River Estuary, Korea 1. Benthic Environment (영산강 하구역의 연성저질에 서식하는 저서동물 군집 1. 저서환경)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.330-342
    • /
    • 1998
  • Benthic environmental parameters were analysed at 40 stations during the period from April 1995 to February 1996. such as water temperature, salinity, and dissolved oxygen (DO)-concentration in the surface and bottom water layers, grain size, chemical oxygen demand (COD), ignition loss, particulate organic carbon (POC) in the sediment of Youngsan River estuary. The water temperature ranged from 4.1 to $29.8^{\circ}C$ in the surface and 4.0 to $20.7^{\circ}C$ in the bottom layers. Salinity ranged from 15.1 to $33.6\%_{\circ}$ in the surface and 31.5 to $33.2\%_{\circ}$ in the bottom layer. The salinity in the outer pan of the study area was higher than that of inner area from autumn to spring, whereas they remained lower in summer. Dissolved oxygen concentration ranged from 5,1 to 11.2 $mg/\ell$ in the surface, and 0.79 to 10,2 $mg/{\ell}$ in the bottom layers. Hypoxic condition ($\le2.0mg/\ell$) was developed in the bottom water layer from Youngsan dike to Mokpo Harhour in summer due to the summer stratification. The surface sediment type was silty clay with a mean grain size of $9.12{\pm}0.45\phi$. The range of COD was from 6.15 to $15.49mgO_2/g$ with a mean of $10.59{\pm}12.64mgO_2/g$. The COD in the inner stations was relatively higher than that of outer stations, and decreased toward the outer part of the study area. Ignition loss (IL) ranged from 3.35 to $15.45\%$ with a mean of $5.96{\pm}1.91\%$. Principal component analysis was carried out from the following five environmental parameters: water temperature, dissolved oxygen in the bottom layer and mean grain size, clay content and COD in the sediment. The forty stations in the study area were classified into three stational groups. Group I was located in the inner part of the estuary characterised by relatively low surface salinity and bottom water temperature, fine sedimemt texture, high organic matter and low dissolved oxygen concentration during the summer. Meanwhile, Group III showing relatively high bottom salinity and water temperature was located in the outer part of the estuary characterising coarse sediment and low organic content in sediment. Group II was between Group I and Group III. The division of the areal groups had high correlations to the DO in the bottom layer and clay content in the sediment.

  • PDF

Analysis of Groundwater Use and Discharge in Water Curtain Cultivation Areas: Case Study of the Cheongweon and Chungju Areas (청원-충주지역 수막재배용 지하수 사용량 및 배출량 분석)

  • Moon, Sang-Ho;Ha, Kyoochul;Kim, Yongcheol;Yoon, Pilsun
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.387-398
    • /
    • 2012
  • Korean agricultural areas that employ water curtain cultivation (WCC) have recently suffered extensive groundwater shortages due to an increase in the number of facilities. The primary focus of this study is to measure the daily groundwater use and discharge rates in the Cheongweon and Chungju pilot areas, while the second focus is to estimate the total amount of groundwater used in WCC areas nationwide in Korea. Taking into consideration several factors, including motor type, outflow abilities of wells, records of daily minimum temperatures below $0^{\circ}C$, and the number of running wells according to weather variations, we estimated that $53,138m^3/ha$ of groundwater had been used in the 4-hectare Cheongweon pilot area during the winter period of late 2011 through early 2012. On a prorated areal basis, we can calculate that the total groundwater used nationwide was 0.57 billion $m^3$ in WCC areas of $10,746m^2$. This value is equivalent to 33.7% of the total agricultural groundwater use (1.69 billion $m^3$) in Korea. During 9-22 February 2012, the daily water discharge rate in the 4-ha Cheongweon pilot area ranged from 2,079 to $2,628m^3$, averaging $2,341m^3$. Combining this value with meteorological records for 94 days with a daily minimum temperature below $0^{\circ}C$ results in an estimated groundwater volume of $54,990m^3/ha$ for the pilot area during the 2011-2012 winter period. The total amount of groundwater used nationwide in WCC areas would then be 0.59 billion $m^3$, equivalent to 34.9% of the total agricultural groundwater use in Korea. In the Chungju area, the groundwater discharge rate was estimated to be less than 805 $m^3$/ha. This value, combined with weather data for 108 days with a daily minimum temperature below $0^{\circ}C$ in this area, can be applied to infer that the total groundwater volume used in WCC areas nationwide is no more than 55% of the total agricultural groundwater use in Korea.

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.