• 제목/요약/키워드: Area estimation

검색결과 3,316건 처리시간 0.025초

적응적 신축 움직임 추정 방법 (Adaptive Zoom Motion Estimation Method)

  • 장원석;권오준;권순각
    • 한국멀티미디어학회논문지
    • /
    • 제17권8호
    • /
    • pp.915-922
    • /
    • 2014
  • We propose an adaptive zoom motion estimation method where a picture is divided into two areas based on the distance information with a depth camera : the one is object area and the other is background area. In the proposed method, the zoom motion is only applied to the object area except the background area. Further, the block size of motion estimation for the object area is set to smaller than that of background area. This adaptive zoom motion estimation method can be reduced at the complexity of motion estimation and can be improved at the motion estimation performance by reducing the block size of the object area in comparison with the conventional zoom motion estimation method. Based on the simulation results, the proposed method is compared with the conventional methods in terms of motion estimation accuracy and computational complexity.

Bayes Prediction for Small Area Estimation

  • Lee, Sang-Eun
    • Communications for Statistical Applications and Methods
    • /
    • 제8권2호
    • /
    • pp.407-416
    • /
    • 2001
  • Sample surveys are usually designed and analyzed to produce estimates for a large area or populations. Therefore, for the small area estimations, sample sizes are often not large enough to give adequate precision. Several small area estimation methods were proposed in recent years concerning with sample sizes. Here, we will compare simple Bayesian approach with Bayesian prediction for small area estimation based on linear regression model. The performance of the proposed method was evaluated through unemployment population data form Economic Active Population(EAP) Survey.

  • PDF

Small Area Estimation via Nonparametric Mixed Effects Model

  • Jeong, Seok-Oh;Shin, Key-Il
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.457-464
    • /
    • 2012
  • Small area estimation is a statistical inference method to overcome the large variance due to the small sample size allocated in a small area. Recently some nonparametric estimators have been applied to small area estimation. In this study, we suggest a nonparametric mixed effect small area estimator using kernel smoothing and compare the small area estimators using labor statistics.

적응적 움직임 추정영역 선택을 사용한 영상안정화 성능개선 (Improving Performance of Digital Image Stabilization using Adoptive motion estimation Area selection)

  • 김동균;이진희;유윤종;백준기
    • 대한전자공학회논문지SP
    • /
    • 제45권5호
    • /
    • pp.18-24
    • /
    • 2008
  • 본 논문은 적웅적 움직임 추정영역 선택을 사용한 디지털 영상안정화의 성능개선에 대한 새로운 방법을 제시한다. 움직임 추정을 위한 후보영역을 선정하고 그 중에서 제안하는 두 가지 방법인 다중 영상 참조와 윤곽에너지 판별을 통해 최종 움직임 추정영역을 선택한다. 정해진 영역에서 움직임을 추정하고 보상한다. 실험을 통해 제안하는 방법이 영상안정화의 성능을 향상 시킴을 보인다.

Comparison of Two Nondestructive Methods of Leaf Area Estimation

  • Woo, Hyo-Jin;Park, Yong-Mok
    • Journal of Ecology and Environment
    • /
    • 제32권1호
    • /
    • pp.61-65
    • /
    • 2009
  • We compared two nondestructive methods for leaf area estimation using leaves of 16 common plant species classified into six types depending on leaf shape. Relatively good linear relationships between actual leaf area (LA) and leaf length (L), width (W), or the product of length and width (LW) were found for ordinary leaves with lanceolate, oblanceolate, linear and sagitttate shapes with entire margins, serrate margins, mixed margins with a entire form and shallow lobes, and ordinary incised margins. LA was better correlated with LW than L or W, with $R^2$ > 0.91. However, for deeply incised lobes, LA estimation using LW showed low correlation coefficient values, indicating low accuracy. On the other hand, a method using photographic paper showed a good correlation between estimates of area based on the mass of a cut-out leaf image on a photographic sheet (PW) and actual leaf area for all types of leaf shape. Thus, the PW method for LA estimation can be applied to all shapes of leaf with high accuracy. The PW method takes a little more time and has a higher cost than leaf estimation methods using LW based on leaf dimensions. These results indicate that researchers should choose their nondestructive LA estimation method according to their research goals.

소지역 추정을 위한 M-분위수 커널회귀 (M-quantile kernel regression for small area estimation)

  • 심주용;황창하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.749-756
    • /
    • 2012
  • 소지역 추정을 위해 널리 사용되고 있는 방법 중 하나는 선형혼합효과모형이다. 그러나 종속변수와 독립변수 사이의 관계가 비선형일 때 이 모형은 소지역 관련 모수에 대해 편의된 추정값을 초래한다. 본 논문에서는 M-분위수 커널회귀를 사용하여 소지역의 평균을 추정하는 방법을 제안한다. 그리고 모의실험을 통하여 서포트벡터분위수회귀와 성능을 비교함으로써 제안된 방법의 우수성을 보인다.

소지역 실업자수 추정을 위한 로지스틱 선형혼합모형 기반 EBLUP 타입 추정량 평가 (Evaluation of EBLUP-Type Estimator Based on a Logistic Linear Mixed Model for Small Area Unemployment)

  • 김서영;권순필
    • 응용통계연구
    • /
    • 제23권5호
    • /
    • pp.891-908
    • /
    • 2010
  • 근래 소지역 추정(small area estimation)에 관한 연구는 비교적 활발하게 이루어진 편인데 비해, 우리나라의 국가통계 작성에 실제 활용된 사례는 거의 없는 실정이다. 이는 소지역 추정이 갖는 많은 장점에도 불구하고 공식통계 활용 여부를 판단하기가 그만큼 어렵기 때문이다. 본 연구는 소지역 추정방법에 의해 우리나라 시군구 실업자 통계를 생산하는 방법을 모색하고자 한다. 시군구 실업자수 추정은 로지스틱 선형혼합모형에 의한 EBLUP 타입(EBLUP-type) 추정량을 사용하였다. 실제자료분석과 모의실험 결과에 대해 다양한 평가 방법을 적용하고, 추정량의 특성을 비교 분석하였다. 그 결과 본 연구에서 적용한 로지스틱 선형혼합모형 기반 EBLUP 타입 추정량은 우리나라 시군구 실업자수 추정에 활용 가능성이 높은 것으로 평가되었다.

Geographically weighted kernel logistic regression for small area proportion estimation

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper we deal with the small area estimation for the case that the response variables take binary values. The mixed effects models have been extensively studied for the small area estimation, which treats the spatial effects as random effects. However, when the spatial information of each area is given specifically as coordinates it is popular to use the geographically weighted logistic regression to incorporate the spatial information by assuming that the regression parameters vary spatially across areas. In this paper, relaxing the linearity assumption and propose a geographically weighted kernel logistic regression for estimating small area proportions by using basic principle of kernel machine. Numerical studies have been carried out to compare the performance of proposed method with other methods in estimating small area proportion.

보조 동력장치용 서보밸브 유효 오리피스 면적의 칼만필터 추정 (Kalman Filter Estimation of the Servo Valve Effective Orifice Area for a Auxiliary Power Unit)

  • 장지팡;김춘택;정헌술
    • 유공압시스템학회논문집
    • /
    • 제4권4호
    • /
    • pp.1-7
    • /
    • 2007
  • Flow rate is one of the important variables for precise motion control and detection of the faults and fluid loss in many hydraulic components and systems. But in many cases, it is not easy to measure it directly. The orifice area of a servo valve by which the fluid flows is one of key factors to monitor the flow rate. In this paper, we have constructed an estimation algorithm for the effective orifice area by using the model of a servo valve cylinder control system and Kalman filter algorithm. Without geometry information about the servo valve, it is shown that the effective orifice area can be estimated by using only displacement and pressure data corrupted with noise. And the effect of the biased sensor data and system parameter errors on the estimation results are discussed. The paper reveals that sensor calibration is important in accurate estimation and plausible parameter data such as oil bulk modulus and actuator volume are acceptable for the estimation without any error. The estimation algorithm can be used as an useful tool for detecting leakage, monitoring malfunction and/or degradation of the system performance.

  • PDF

MSPE를 이용한 임금총액 소지역 추정 (A Small Area Estimation for Monthly Wage Using Mean Squared Percentage Error)

  • 황희진;신기일
    • 응용통계연구
    • /
    • 제22권2호
    • /
    • pp.403-414
    • /
    • 2009
  • 국내외적으로 지역통계에 관한 관심이 높아지고 있으며 이와 관련하여 소지역 추정에 관한 많은 연구가 진행되고 있다. 소지역 추정에 사용되는 추정량의 대부분은 MSE(moan squared error)를 최소화하여 얻어진다 (Rao, 2003). 최근 황희진과 신기일 (2008)은 MSPE(mean squared percentage error)를 최소화하는 추정량을 사용한 소지역 추정법을 제안하였다. 본 논문에서는 노동통계 중 지청별 일인당 평균 임금총액 추정에 황희진과 신기일 (2008)이 제안한 방법을 적용하여 보았으며 2007년 매월 노동통계 자료를 이용하여 기존의 MSE를 최소화 하여 얻어진 여러 추정량과 우수성을 비교해 보았다. 또한 노동통계를 위 한 소지역 추정의 실제 사용 가능성을 살펴보았다.