• Title/Summary/Keyword: Area dose

Search Result 1,083, Processing Time 0.029 seconds

Status of Radiation Dose and Radioactive Contamination due to the Fukushima Accident

  • Baba, Mamoru
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.133-140
    • /
    • 2016
  • Backgrounds: The accident at Fukushima Daiichi Nuclear Power Plant (NPP), March 2011, caused serious radioactive contamination over wide area in east Japan. Therefore, it is important to know the effect of the accident and the status of NPP. Materials and Methods: This paper provides a review on the status of radiation dose and radioactive contamination caused by the accident on the basis of publicized information. Results and Discussion: Monitoring of radiation dose and exposure dose of residents has been conducted extensively by the governments and various organizations. The effective dose of general residents due to the accident proved to be less than a mSv both for external and internal dose. The equivalent committed dose of thyroid was evaluated to be a few mSv in mean value and less than 50 mSv even for children. Monitoring of radioactivity concentration has been carried out on food ingredients, milk and tap water, and actual meal. These studies indicated the percentage of foods above the regulation standard was over 10% in 2011 but decreasing steadily with time. The internal dose due to foods proved to be tens of ${\mu}Sv$ and much less than that due to natural $^{40}K$ even in the Fukushima area and decreasing steadily, although high level concentration is still observed in wild plants, wild mushrooms, animals and some kind of fishes. Conclusion: According to extensive studies, not only the effect of the accident but also the pathway and countermeasures against radioactive contamination have been revealed, and they are applied very effectively for restoration of environment and reconstruction of the area.

Calibration Examination of Dose Area Product Meters using X-ray (X선을 이용한 면적선량계의 교정 연구)

  • Jung, Jae Eun;Won, Do-Yeon;Jung, Hong-Moon;Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • We measured the absorbed dose and the area dose using an ionization chamber type of area dose product (DAP) meter and measured the calibration factor in the X-ray examination. In the indirect dose measurement method, the detector was installed in the radiation part of the X-ray equipment, and the measured value was calculated as the dose at the exposure part. The instrument used to calculate the calibration factor was an X-ray equipment (DK-550R / F, DongKang Medical Co., Ltd., Seoul, Korea). The calibration method for the calibration factor was to connect the DAP meter (PD-8100, Toreck Co. Ltd., Japan) to the calibration dosimeter tube voltage of 70 kV, tube current of 500 mA, 0.158 sec. The reference dosimeter used a semiconductor (DOSIMAX plus A, Scanditronix, $Wellh{\ddot{o}}fer$, Germany). After installing the DAP meter on the front of the multi-collimator of the ionization chamber, the calibration factor of the dosimeter was obtained using the reference dosimeter for accurate dose measurement. Experimental exposure values and values from the calibration dosimeter were calculated by multiplying each calibration factor. The calibration factor was calculated as 1.045. In order to calculate the calibration coefficient according to the tube voltage in the ionization type DAP dosimeter, the absorbed dose and the area dose were calculated and the calibration factor was calculated. The corrective area dose was calculated by calculating the calibration factor of the DAP meter.

Fluoroscopy examinations for the management of patient dose study on the establishment of diagnostic reference level (UGI, Esophagography standards) (투시 조영 검사 시 환자 선량 관리를 위한 진단참고선량 구축에 관한 연구 (UGI, Esophagography 기준))

  • Hong, Sun-Suk;Park, Eun-Seong;Cho, Joon-Yeong;Seong, Min-Suk;Yang, Han-Joon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This round of tests in patients with UGI and Esophagography data collected by national and international reference levels based on the original set of guidelines and fluoroscopy, through the provision of medical radiation exposure reduction and further optimization of Defense to realize that is intended. 359 names in our hospital underwent Esophagography 302 patients who underwent UGI average fluoroscopy time and number of images to calculate the average 21 cm Acryl phantom dose for 10 seconds and 20 seconds, average area dose and the area dose of 1 spot image, 5 spot consecutive images by measuring the patient dose and third quartile of the mean area dose was set seonryangin reference dose. Esophagography average patient dose was set to 30.05 $Gy{\cdot}cm^2$, DRL was set at a 25.37 $Gy{\cdot}cm^2$. Average dose of UGI patients were selected as 45.33 $Gy{\cdot}cm^2$, DRL was set at a 34 $Gy{\cdot}cm^2$. UGI patients with established average dose recommended in the 2008 national recommendation from the UGI examination with a dose of less than 49.7 $Gy{\cdot}cm^2$ seonryangin is evaluated. This Note examines the dose of self-aware through education recognizes the importance of dose reduction and examine if their efforts and further reduce patient dose could achieve optimization of the medical exposure is considered.

  • PDF

Determination of Environmental Radiation Dose Rate in the Southeastern Korea (우리나라 남동지방(南東地方)의 환경방사선(環境放射線) 선량율(線量率)의 결정(決定)(1980년도(年度)))

  • Rho, Chae-Shik;Lee, Hyun-Duk
    • Journal of Radiation Protection and Research
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1980
  • A portable count-ratemeter and a thermoluminescent detector ($CaSO_4:Dy$) have been used to obtain total gamma dose rates at approximately 50 locations during the course of several survey trips in the southeastern Korea. The purposes of these measurement were to provide a future reference data and to establish the approximate range of population exposure to the natural environmental radiation. The natural levels encountered ranged from a low of 14.6 microroentgen per hour to a high of 18.9 microroentgen per hour with a mean of $16.3{\pm}1.0$ microroentgen per hour. Among these results are the relatively high natural dose rate levels in the Masan area and Yangsan-Tongdosa area with the relatively low natural dose rate levels in the Gyeongsan-Cheongdo area and the Samrangjin-Jinyeong-Gimhae area.

  • PDF

Analysis of Visible Light Communication Module Degraded by High Dose-Rate Gamma Irradiation using Thermal Infrared Image (적외선 열영상을 이용한 가시광 통신모듈의 고선량 감마선조사에 따른 열화 분석)

  • Cho, Jai-Wan;Hong, Seok-Boong;Koo, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1203-1209
    • /
    • 2011
  • In this paper, the degradation evaluation method of VLC (Visible Light Communication) wireless module after high dose rate gamma-ray irradiation using the thermal infrared camera is proposed. First, the heating characteristics of the active devices embedded in the VLC wireless module during the condition of normal operation is monitored by thermal infrared camera. By the image processing technique, the trends of the intensity of the heat emitted by the active devices are calculated and stored. The feature of the blob area including the area of the active devices in the thermal infrared image is extracted and stored. The feature used in this paper is the mean value of the gray levels in the blob area. The same VLC module has been gamma irradiated at the dose rate of about 4.0 kGy/h during 72 hours up to a total dose of 288 kGy. And then, the heating characteristics of the active devices embedded in the VLC wireless module after high dose gamma ray irradiation is observed by thermal infrared camera. The high dose gamma-ray induced degradation of the active devices embedded in the VLC module was evaluated by comparing the mean value of the blob area to the one of the same blob area of the VLC module before the gamma ray irradiation.

A Study on the Additional Radiation Exposure Dose of kV X-ray Based Image Guided Radiotherapy (kV X선 기반 영상유도방사선치료의 추가 피폭선량에 관한 연구)

  • Gha-Jung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1157-1164
    • /
    • 2023
  • This study measures the additional dose for each treatment area using kV X-ray based OBI (On-Board Imager) and CBCT (Cone-Beam CT), which have excellent spatial resolution and contrast, and evaluates the adequacy and stability of radiation management aspects of IGRT. The subjects of the experiment were examined with OBI and CBCT attached to a linear accelerator (Clinac IX), and ring-shaped Halcyon CBCT under imaging conditions for each treatment area, and the dose at the center was measured using an ion chamber. OBI single fraction dose was measured as 0.77 mGy in the head area, 3.04 mGy in the chest area, and 7.19 mGy in the pelvic area. The absorbed doses from the two devices, Clinac IX CBCT and Halcyon CBCT, were measured to be similar in the pelvic area, at 70.04 mGy and 70.45 mGy. and in chest CBCT, the Clinac IX absorbed dose (70.05 mGy) was higher than the Halcyon absorbed dose (21.01 mGy). The absorbed dose to the head area was also higher than that of Clinac IX (9.08 mGy) and Halcyon (5.44 mGy). In kV X-ray-based IGRT, additional radiation exposure due to photoelectric absorption may affect the overall volume of the treatment area, and caution is required.

A Comparison Analysis of CT Effective Dose and Image Quality according to Abdominal Diameter (복부직경에 따른 CT유효선량 및 화질변화 비교 분석)

  • Yoon, Joon;Kim, Hyeonju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.821-826
    • /
    • 2018
  • This study was performed randomly from all the patients who visited the University Hospital in Gyeonggi-do from January 1, 2018 to June 30, 2018 for the abdominal CT scan. We divided the patients into three groups and evaluated the extent of effective dose and image quality according to the area of the abdominal CT image. As a result, the effective dose was 7.34 mSv in the average area group, 8.39 mSv in the average area and 5.89 mSv in the average area. For the analysis of image quality, ROI was plotted in the same three regions according to the abdominal area. As a result, CT values were significantly different in the abdominal area classified into 3 groups (p <0.05). The results of this study can be used as a basic data for the development of a protocol that can be applied in actual clinical practice. It is thought that it can help to reduce the image quality and the radiation dose.

Study on Radiation dose in according to Magnification's rate in fluoroscopy (투시 조영 검사 시 확대율에 따른 피폭선량에 관한 고찰)

  • Kang, Kyeong-Mi;Hong, Seon-Sook;Seong, Min-Sook;Song, Woon Heung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.39-44
    • /
    • 2013
  • Purpose : The purpose of this study is the magnification rates depending on the area of patient dose (DAP) and glass dosimeter see the change of the dose according to the dose characteristics of low-magnification aims to raise standards. Materials and Method : Direct DR equipment Sonialvision DAR-8000f, Shimadzu was used, the patient entrance dose measurements to the surface of the Rando Phantom of the neck and the abdomen was placed on the Xi unfors. glass dosimeter for measuring organ doses at the same time the Rando Phantom of the major organs in place by inserting a 9 ", 12", 15 ", 17" and 30 seconds for each magnification were measured according in fluoroscopy. DAP meter area of the patient dose was measured. Result : Esophagography at 17" 143% than 9"magnification the average area dose was increased. Organ dose of Esophagography at 17" was decreased 25.32% than 9" magnification. UGI at 17" was increased 129.73% DAP than 9" magnification. Organ dose of UGI at 17" was decreased 23.32% than 9" magnification. Where the major organs of magnification at 17" were decreased(lung -25.96%, stomach -33.09%, spleen -27.81%, liver -4.92%) than 9" magnification. Conclusion : Expected to get better quality image While using the proper magnification, and have recognition that difference Organ doses and DAP meter in fluoroscopy.

  • PDF

Comparisons and Measurements the Dose Value Using the Semiconductor Dosimeter and Dose Area Product Dosimeter in Skull, Chest and Abdomen (두개부, 흉부, 복부검사 시 반도체 선량계와 면적 선량계를 이용한 선량 값의 측정 및 비교)

  • Kim, Ki-Won;Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.38 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Recently, There has been a growing interests in exposure dose to the patient who take a examination using radiation. The radiological technologists should be concerned about the exposure dose to patients and make an efforts to reduce the patient dose without decreasing the image quality. In the case of foreign, the exposure dose of general X-ray examination have been managed by standard value of exposure dose using dose area product (DAP) and entrance surface dose (ESD) dosimeter. This study is to compare DAP and ESD in skull anterior posterior (AP), chest posterior anterior (PA), and abdomen AP projections of phantom by using DAP and ESD dosimeter. In the results, there were no differences between DAP and ESD dosimeter.

Comparison of Dose Measurement of Glass Dose Meter, Semiconductor Dose Meter, and Area Dose Meter in Diagnostic X-ray Energy (진단영역 X선 에너지에서 유리선량계, 반도체선량계, 면적선량계의 선량 실측 비교)

  • Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.483-489
    • /
    • 2019
  • This paper obtained and compared these dose values by setting and comparing the X-ray imaging conditions (tube voltage 60 kVp, 70 kVp, 80 kVp, tube current 10 mAs, 16 mAs and X-ray field size are 10 × 10 cm, 15 × 15 cm). Each dose value was measure 10 times and represented as an average value. The purpose of this experiment is to serve as a reference for the X-ray exposure of diagnostic areas according to the type of dosimeter and to help with another dose measurement. The results of the experiment showed very little difference between the glass dosimeter(GD) and semiconductor dosimeter values due to changes in tube voltage of 60, 70, 80 kVp, regardless of field sized, but for dose area product(DAP), the difference in dose value was significant according to field size.