• Title/Summary/Keyword: Arduino MEGA

Search Result 17, Processing Time 0.023 seconds

Study on IoT-based Map Inside the Building and Fire Perception System (IoT 기반 건물 내부 지도 및 화재 안내 시스템에 관한 연구)

  • Moon, Sung-Ryong;Cho, Joon-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.85-90
    • /
    • 2019
  • This paper is a study on IoT based map inside the building and fire perception system using microprocessor and LABVIEW program. The smart control system implemented in this paper is designed to identify the location of fire by using microprocessor, flame detection sensor, carbon monoxide sensor and temperature sensor, and to guide the optimal travel route through Zigbee communication. And the proposed system uses QR code to interoperate with smartphone. The coordinator control verified that the sensor value of the smart control system installed through the LABVIEW software was confirmed. The IoT based control system studied in this paper was implemented with Arduino mega board and LABVIEW software, and the operation status was confirmed by display device and coordination.

Smart Alarm Clock using Weather Information and Arduino (날씨 정보와 아두이노를 이용한 스마트 알람 시계)

  • Heo, Gyeongyong;Kim, Koang Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.889-895
    • /
    • 2019
  • It is not easy to keep time promises in the complex daily lives. Especially, the increase in the number of vehicles causes traffic congestion in commuting time, which results in the delayed arrival and varies greatly depending on the weather conditions. In this paper, proposed is a smart alarm clock that automatically adjusts the alarm time according to weather conditions and suggests ways to deal with traffic congestion. The proposed smart alarm clock is designed to operate the functions of a normal alarm clock using touch functionality. In addition, it is designed to find weather information using open API and to automatically change alarm time to prepare for expected time delay. The proposed design was implemented based on Arduino Mega2560 and a touch TFT-LCD. WiFi module for internet connection, RTC module for clock function and MP3 player module for alarm sound playback were used together. The proposed design has been filed as a patent and is currently under review.

Development of robotic hands of signbot, advanced Malaysian sign-language performing robot

  • Al-Khulaidi, Rami Ali;Akmeliawati, Rini;Azlan, Norsinnira Zainul;Bakr, Nuril Hana Abu;Fauzi, Norfatehah M.
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.183-199
    • /
    • 2018
  • This paper presents the development of a 3D printed humanoid robotic hands of SignBot, which can perform Malaysian Sign Language (MSL). The study is considered as the first attempt to ease the means of communication between the general community and the hearing-impaired individuals in Malaysia. The signed motions performed by the developed robot in this work can be done by two hands. The designed system, unlike previously conducted work, includes a speech recognition system that can feasibly integrate with the controlling platform of the robot. Furthermore, the design of the system takes into account the grammar of the MSL which differs from that of Malay spoken language. This reduces the redundancy and makes the design more efficient and effective. The robot hands are built with detailed finger joints. Micro servo motors, controlled by Arduino Mega, are also loaded to actuate the relevant joints of selected alphabetical and numerical signs as well as phrases for emergency contexts from MSL. A database for the selected signs is developed wherein the sequential movements of the servo motor arrays are stored. The results showed that the system performed well as the selected signs can be understood by hearing-impaired individuals.

Development of the sustainable solar cell powered LTE based IoT fine dust detecting terminal (태양전지를 이용한 지속 가능형 LTE 기반 IoT 미세먼지 측정 단말기 개발)

  • Kim, Howoon;Woo, Dong Sik
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.109-115
    • /
    • 2021
  • In this paper, the fine dust detecting terminal which can transmit data in real time was developed. The terminal used a wide spreading LTE network and was powered by solarcell and battery for easy installation and independent operation, because it did not need the wired power grid or wired communication network. The data showed the possibility of forecasting fine dust changes by analyzing with the data from public meteorologic data. The developed terminal will be helpful for predicting and analyse fine dust's more precise flow and effect on environment with an easy installation on any places.

Engine Control And Drive Assist System (음주측정 시동 및 안전운전 보조시스템)

  • Park, Myeong-Chul;Hwang, Dong-Geon;Oh, Seong-Hyeok;Cho, In-Ho;Kim, Jae-Hwan;Lee, Do-Hui
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.297-298
    • /
    • 2022
  • 현재 도로 위 차량은 다양한 기능이 탑재되어 있고, 이는 운전자의 편의와 안전을 위해 발전해왔다. 하지만 음주운전과 안전운전 불이행에 의한 교통사고는 꾸준히 발생하고 있으며, 이 사고율은 단순히 제도적 규제와 운전자의 주의만으로는 감소시키기 어렵다고 판단된다. 본 논문은 제도적인 규범만이 아닌 기계적인 차원에서의 음주운전 사고 예방과 안전운전 불이행 사고의 방지를 하기 위해 '음주측정 시동 및 안전운전 보조시스템'을 제안한다. 이러한 문제를 해결하고자 알코올 측정 센서를 통해 시동을 걸기 전 음주측정을 해 음주운전의 가능성을 차단하고 초음파 센서를 이용하여 전, 후·측방 감지를 하고 주변의 장애물과 운전자의 부주의 시 즉각적인 피드백을 제공해 안전운전 불이행 사고를 방지할 수 있다.

  • PDF

Development of Wireless Communication Educational Equipment for Internet of Things (IoT) (사물인터넷(IoT)을 위한 무선통신 교육장비 개발)

  • Kim, Han-jong
    • Journal of Practical Engineering Education
    • /
    • v.13 no.2
    • /
    • pp.321-326
    • /
    • 2021
  • Wireless communication is a core technology constituting the Internet of Things (IoT), but there is no suitable educational equipment to learn various wireless communication technologies used in the Internet of Things through practice. This paper deals with the development of advanced education and training equipment that can perform various IoT wireless communication practices. It uses an Arduino mega board as a device to control various sensors. As wireless network technologies to send and receive the sensing date wirelessly, it makes use of RFID/NFC and Bluetooth among WPAN technologies, WiFi among WLAN technologies and LoRa and 2.4GHz wireless transceiver among WWAN technologies. In addition, GPS, infrared communication, I2C communication, and SPI communication are organized so that various IoT wireless communication technologies can be learned through practice. In addition, since the educational equipment developed in this paper is equipped with two devices, it is designed to perform transmission and reception experiments for wireless network technology within the equipment.

Constructing an Internet of things wetland monitoring device and a real-time wetland monitoring system

  • Chaewon Kang;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.155-162
    • /
    • 2023
  • Global climate change and urbanization have various demerits, such as water pollution, flood damage, and deterioration of water circulation. Thus, attention is drawn to Nature-based Solution (NbS) that solve environmental problems in ways that imitate nature. Among the NbS, urban wetlands are facilities that perform functions, such as removing pollutants from a city, improving water circulation, and providing ecological habitats, by strengthening original natural wetland pillars. Frequent monitoring and maintenance are essential for urban wetlands to maintain their performance; therefore, there is a need to apply the Internet of Things (IoT) technology to wetland monitoring. Therefore, in this study, we attempted to develop a real-time wetland monitoring device and interface. Temperature, water temperature, humidity, soil humidity, PM1, PM2.5, and PM10 were measured, and the measurements were taken at 10-minute intervals for three days in both indoor and wetland. Sensors suitable for conditions that needed to be measured and an Arduino MEGA 2560 were connected to enable sensing, and communication modules were connected to transmit data to real-time databases. The transmitted data were displayed on a developed web page. The data measured to verify the monitoring device were compared with data from the Korea meteorological administration and the Korea environment corporation, and the output and upward or downward trend were similar. Moreover, findings from a related patent search indicated that there are a minimal number of instances where information and communication technology (ICT) has been applied in wetland contexts. Hence, it is essential to consider further research, development, and implementation of ICT to address this gap. The results of this study could be the basis for time-series data analysis research using automation, machine learning, or deep learning in urban wetland maintenance.