• Title/Summary/Keyword: Arctic Offshore Pipelines

Search Result 5, Processing Time 0.019 seconds

Estimation of burial depth for arctic offshore pipelines by an ice scour model (빙쇄굴 모델에 의한 극지 해저 파이프라인의 매설깊이 산정)

  • 윤기영;최경식
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 1997
  • The interaction of ground ice features with underlying seabed is one of the major considerations in the design of Arctic pipeline systems. Regarding the development of offshore gas field near Sakhalin Island, which is an ice-infested area, in this paper an ice scour model to determine the burial depth of Arctic offshore pipeline is studied. Using a simplified ice-seabed interaction process, ice scour depth is easily estimated. This nonlinear numerical model can simulate the scouring process for various enviromental parameters such as ice mass, incoming velocity, soil strength. This study also deals with interaction forces during the scouring process in sloping seabed conditions and discusses the ice loads that are transmitted through the seabed soil.

  • PDF

Numerical Study for the Influence of Environment Temperature on Offshore Arctic Pipeline and Impingement Erosion Analysis by using Thermal Flow Simulation (극지 해양 파이프라인 내부 유체의 온도별 영향 및 내부 충돌침식 분석)

  • Jo, Chul Hee;Lee, Jun-Ho;Jang, Choon-Man;Heang, Su-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2015
  • This paper describes thermal flow characteristic in various pipelines: straight pipeline and curved pipeline. In the Arctic and ocean area, pipelines are exposed to a extremely low temperature ($0{\sim}-40^{\circ}C$). In this situation, three-dimensional flow analysis should be analyzed to investigate thermal effects such as pressure drop, temperature change, velocity deficit and distribution change of liquid droplet of internal fluid. Also, due to freezing of water droplet, impingement erosion is expected in the curved pipeline. The stability of the pipelines can be influenced by impingement erosion. In this paper, multi-phase and multi-species analysis was introduced to analyze the flow characteristics and impingement erosion of Arctic and ocean pipelines.

A Parametric Study on Ice Scouring Mechanism for Determination of Pipeline Burial Depths

  • Park, Kyung-Sik;Lee, Jong-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.29-40
    • /
    • 2004
  • Interaction of grounded ice ridges with underlying seabed is one of the major considerations in the design of Arctic pipeline system. Previously several ice scour models were developed by researchers to describe the ice scour-seabed interaction mechanism. In this paper, a parametric study on ice scouring mechanism is performed and the limitation of ice scour-seabed interaction models is discussed. Simple laboratory tests are carried out and then the shape pattern of deposited soil around the ice is redefined. New ice scour model assumes trapezoidal cross section based on the field observation data. Ice scour depth and soil resistance forces on seabed are calculated with varying the keel angle of a model ice ridge.

A Comparative Study of Ice Scour-Seabed Interaction Models (빙쇄굴-해저지반 상호작용 모델 비교연구)

  • 최경식;이종호
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • The interaction of grounded ice ridges with underlying seabed is one of the major considerations in the design of Arctic pipeline system. Previously several ice scour models were developed by researchers to describe the ice scour-seabed interaction mechanism. In view of possible improvements, a comparative study of those ice scour models is performed and their limitation in modeling is discussed. Simple laboratory tests are carried out and then the shape pattern of deposited soil around the ice model is newly defined. Unlike the rectangular idealization of an ice block, in this modified ice scour model, trapezoidal cross sections are assumed to represent the typical shape of an ice ridge based on the field observation data. With the horizontal and vertical motion of ice model, the ice scour depth and soil reacting forces on seabed are calculated with varying the keel angle of an ice ridge.

Design for avoid unstable fracture in shipbuilding and offshore plant structure (조선 및 해양플랜트 구조물의 불안전 파괴방지 설계기술)

  • An, Gyubaek;Bae, Hong-Yeol;Noh, Byung-Doo;An, Young-Ho;Choi, Jong-Kyo;Woo, Wanchuck;Park, Jeong-Ung
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Recently, there have been the increase of ship size and the development of oil and gas in arctic region. These trends have led to the requirements such as high strength, good toughness at low temperature and good weldability for prevent of brittle fracture at service temperature. There has been the key issue of crack arrestability in large size structure such as container ship. In this report for the first time, crack arrest toughness of thick steel plate welds was evaluated by large scale ESSO test for estimate of brittle crack arrestability in thick steel plate. For large structures using thick steel plates, fracture toughness of welded joint is an important factor to obtain structural integrity. In general, there are two kinds of design concepts based on fracture toughness: crack initiation and crack arrest. So far, when steel structures such as buildings, bridges and ships were manufactured using thick steel plates (max. 80~100mm in thickness), they had to be designed in order to avoid crack initiation, especially in welded joint. However, crack arrest design has been considered as a second line of defense and applied to limited industries like pipelines and nuclear power plants. Although welded joint is the weakest part to brittle fracture, there are few results to investigate crack arrest toughness of welded joint. In this study, brittle crack arrest designs were developed for hatch side coaming of large container ships using arrest weld, hole, and insert technology.