• Title/Summary/Keyword: Architectural Constraints

Search Result 103, Processing Time 0.027 seconds

Optimal shape of LCVA for vibration control of structures subjected to along wind excitation

  • Park, Ji-Hun;Min, Kyung-Won
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.573-591
    • /
    • 2012
  • In this study, a procedure to design an optimal LCVA that maximizes the equivalent damping ratio added to the primary structure subjected to along-wind excitation is proposed. That design procedure does not only consider the natural frequency and damping ratio of the LCVA, but also the proportion of the U-shaped liquid, which is closely related to the participation ratio of the liquid mass in inertial force. In addition, constraints to ensure the U-shape of the liquid are considered in the design process, so that suboptimal solutions that violate the optimal tuning law partly are adopted as a candidate of the optimal LCVA. The proposed design procedure of the LCVA is applied to the control of the 76-story benchmark building, and the optimal proportions of the liquid shape under various design conditions are compared.

A Study on the Application of Biomorphism on Contemporary Architectural Design (현대 건축 디자인에서의 생물학적 형태의 적용에 관한 연구)

  • Kim Won-Gaff
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.1 s.54
    • /
    • pp.30-38
    • /
    • 2006
  • The new aspect of contemporary architectural design is the computer simulation of morphogenesis and evolution of the organic body. Morphogenesis and evolution is the kind of emergence that is the process of complex pattern formation from simpler rules in complex system. The development comprises the sequence of pattern formation, differentiation, morphogenesis, growth. This study analyzes the application methodology of various biomorphism in contemporary architecture. The methods of generative application by computation in architecture are self-organization, differentiation, growth algorithm via MoSS. And the methods of evolution by computation are genetic algorithm, multi-parameter in environments, phylogenetic cross-over, competing as natural selection, mutation+external constraints, generative algorithm+genetic algorithm via Genr8.

Delay Factors in Building Construction Projects in Rwanda

  • Umuhoza, Esperance;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.467-475
    • /
    • 2019
  • Delay is one of the most critical issues for construction projects and leads to huge losses in both developing and industrialized countries. The construction sector in Rwanda, a rapidly-developing nation, is no exception. Delays can be mitigated only once we have identify their primary causes, and these may not be the same in each region. This study aims to ascertain the main critical factors responsible for delays in building construction in Rwanda through an intensive literature review and questionnaire survey. A total of 40 delay causative factors were obtained from a literature review and were further classified into nine major categories. The questionnaire survey was distributed to about 80 respondents from clients, contractors, and consultants. From the list of 40 different factors, the top twelve most critical causes were identified as stoppage of work due to cash flow constraints, delay in approving design documents, confidentiality of physical plan, price fluctuations and delay in approving significant change, change orders, delay in performing inspections, Ineffective project planning, inadequate drawing details, unqualified labor, lack of materials on the market and dishonesty.

Truss Topology Optimization Using Hybrid Metaheuristics (하이브리드 메타휴리스틱 기법을 사용한 트러스 위상 최적화)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.89-97
    • /
    • 2021
  • This paper describes an adaptive hybrid evolutionary firefly algorithm for a topology optimization of truss structures. The truss topology optimization problems begins with a ground structure which is composed of all possible nodes and members. The optimization process aims to find the optimum layout of the truss members. The hybrid metaheuristics are then used to minimize the objective functions subjected to static or dynamic constraints. Several numerical examples are examined for the validity of the present method. The performance results are compared with those of other metaheuristic algorithms.

Topology optimization of variable thickness Reissner-Mindlin plate using multiple in-plane bi-directional functionally graded materials

  • Nam G. Luu;Thanh T. Banh;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.583-597
    • /
    • 2023
  • This paper introduces a novel approach to multi-material topology optimization (MTO) targeting in-plane bi-directional functionally graded (IBFG) non-uniform thickness Reissner-Mindlin plates, employing an alternative active phase approach. The mathematical formulation integrates a first shear deformation theory (FSDT) to address compliance minimization as the objective function. Through an alternating active-phase algorithm in conjunction with the block Gauss-Seidel method, the study transforms a multi-phase topology optimization challenge with multi-volume fraction constraints into multiple binary phase sub-problems, each with a single volume fraction constraint. The investigation focuses on IBFG materials that incorporate adequate local bulk and shear moduli to enhance the precision of material interactions. Furthermore, the well-established mixed interpolation of tensorial components 4-node elements (MITC4) is harnessed to tackle shear-locking issues inherent in thin plate models. The study meticulously presents detailed mathematical formulations for IBFG plates in the MTO framework, underscored by numerous numerical examples demonstrating the method's efficiency and reliability.

Changes in Measuring Methods of Walking Behavior and the Potentials of Mobile Big Data in Recent Walkability Researches (보행행태조사방법론의 변화와 모바일 빅데이터의 가능성 진단 연구 - 보행환경 분석연구 최근 사례를 중심으로 -)

  • Kim, Hyunju;Park, So-Hyun;Lee, Sunjae
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to evaluate the walking behavior analysis methodology used in the previous studies, paying attention to the demand for empirical data collecting for urban and neighborhood planning. The preceding researches are divided into (1)Recording, (2) Surveys, (3)Statistical data, (4)Global positioning system (GPS) devices, and (5)Mobile Big Data analysis. Next, we analyze the precedent research and identify the changes of the walkability research. (1)being required empirical data on the actual walking and moving patterns of people, (2)beginning to be measured micro-walking behaviors such as actual route, walking facilities, detour, walking area. In addition, according to the trend of research, it is analyzed that the use of GPS device and the mobile big data are newly emerged. Finally, we analyze pedestrian data based on mobile big data in terms of 'application' and distinguishing it from existing survey methodology. We present the possibility of mobile big data. (1)Improvement of human, temporal and spatial constraints of data collection, (2)Improvement of inaccuracy of collected data, (3)Improvement of subjective intervention in data collection and preprocessing, (4)Expandability of walking environment research.

Investigating Structural Stability and Constructability of Buildings Relative to the Lap Splice Position of Reinforcing Bars

  • Widjaja, Daniel Darma;Rachmawati, Titi Sari Nurul;Kwon, Keehoon;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.315-326
    • /
    • 2023
  • The design principles and implementation of rebar lap splice in architectural structures are governed by building regulations. Nevertheless, the minimization of rebar-cutting waste (RCW) is often impeded by the mandatory requirements pertaining to the rebar lapping zone as prescribed in design codes. In real-world construction scenarios, compliance with these rules often falls short due to hurdles concerning productivity, quality, safety, time, and cost. This discrepancy between code stipulations and on-the-ground construction practices necessitates an academic exploration. The goal of this research was to delve into the effect of rebar lap splice placement on the robustness and constructability of building edifices. The study initially took on a review of the computation of rebar lapping length and the rules revolving around the lapping zone. Following this, a structural robustness and constructability examination was undertaken, focusing on adherence to the lap splice zone. The interpretations and deductions of the research led to the following insights: (1) the efficacy of rebar lap splice is not solely contingent on the moment, and (2) the implementation of rebar lap splice beyond the specified zone can match the structural integrity and robustness of those confined within the designated area. As a result, the constraints on the rebar lapping zone ought to be revisited and possibly relaxed. The conclusions drawn from this research are anticipated to reconcile the disconnect between building codes and practical construction conditions, furnishing invaluable academic substantiation to further the endeavor of achieving near-zero RCW.

A Production-Installation Simulation Model of Free-Form Concrete Panels

  • Lim, Jeeyoung;Lee, Donghoon;Na, Youngju;Lim, Chaeyeon;Kim, Sunkuk
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.401-404
    • /
    • 2015
  • Demand on free-form buildings is gradually increasing, yet owing to the difficulty of production-installation work, several problems occur in the construction phase upon construction of a building, including the increased cost and construction duration, and reduced constructibility. To solve these problems, a techonology to produce FCP using a CNC(Computerized Numeric Control) machine is developed. The technology is that the information of designed free-form buildings to the CNC machine is transferred, and the transferred information is used for RTM(Rod-Type Mold, the mold shaped by back-up rods) and PCM(Phase Change Material) shaping, and the shaped RTM and PCM have the role of molds to produce FCP. Construction duration and project cost are limited in building sites, so the efficiency of processes like production-installation of FCP for application of the technology is significant. Since it is almost impossible to change the production-installation process at the construction phase when they are established, process should be deliberately decided. Therefore, the purpose of the study is to propose a production-installation simulation model of free-form concrete panels, in aspect of PCM. This paper is establishing the process for production-installation of FCP, estimating time required by each construction type and proposing a time simulation model that changes according to various constraints based on the analyses. With the time simulation model, it will be possible to build a cost model and to review the optimal construction duration and project cost.

  • PDF

Characteristics of the Economic Repair Time of the Components in Public Rental Housing

  • Lee, KangHee;Chae, ChangU
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • Building has required the repair money to improve or maintain the decent living condition continuously after construction. It needs to grasp the building deterioration to decide the scope and contents before it is repaired. Under various conditions such as physical, social and financial constraints, the repair plan would be prepared. Among constraints, the cost is indispensible to specify the repair time, repair scope and target. The required cost would be planned to preparation over the years. In this paper, it aimed at providing the repair strategy of the public rental housing in repair time, using the cumulative cost model which is $3^{rd}$ function. In the $3^{rd}$ function, the inflection point should exist in the line. And there are two types in the cumulative model, First, if the maximum cost be shown, the repair time would be provided. Second, if the maximum cost not be shown, the cumulative function should be proportionally increased and the repair strategy is properly provided with a short cycle. In results of this study, 11 items would provide the repair time. These cumulative function would be repaired about 4 years after constructed, and after about 4 years, the cumulative function would be continuously increased.

Standards of architectural design for the ecological certification of the rural settlements

  • Kavas, Kemal Reha;Danaci, Hacer Mutlu;Cal, Isa
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.53-66
    • /
    • 2020
  • Before the industrial revolution architecture has been shaped by the natural and cultural inputs. Local constraints become more effective determinants of architecture in the rural contexts because by being disengaged from the webs of transportation and communication, rural settlements have achieved sustainability in difficult conditions. The examples of rural settlement and architecture have provided sustainability through integration with natural inputs within the geographical context because they have reached the goals of ecological design within the local constraints. Although this feature of the rural cultural landscapes has been emphasized frequently, tangible standards could not be developed in order to interpret their ecological design principles from the perspectives of the contemporary building sector and planning. However, the historical experience indicates that the sustenance of ecological performance can be possible as a result of integrated planning at the overall scale of the settlement. Therefore, the existing standards are not qualified for interpreting the rural contexts. This study develops a method for analysing, interpreting and evaluating traditional rural settlements and certifying new implementations in the rural environments in the light of the given literature review, discussion and methodological proposal.