VaR는 투자목적이나 위험관리수단으로 시장위험을 측정하는 방법으로 현실생활에서는 다변량 분포에 대하여 추정을 필요로 한다. 본 연구는 다변량 확률변수들의 분포를 생성하기 위하여 Copula 함수를 사용한다. 확률변수들의 종속구조를 exchangeable Copula, fully nested Copula, partially nested Copula로 구별하여 토론한다. 국내의 네 종류의 산업체의 수익률 자료를 실증예제로 하여 Clayton, Gumbel, Frank Copula 함수가 포함된 Archimedean Copula 함수의 모수들을 세 종류의 종속구조를 이용하여 구하고, 이 자료에 적합한 Copula 함수와 각 함수에 대응하는 VaR를 추정하고 비교탐색한다.
수문설계 인자인 확률홍수량 산정시 짧은 홍수량 자료 길이로 인해 홍수량을 직접 이용하기 보다는 강우자료와 강우-유출모형에 의존하고 있는 현시점에서 무엇보다 중요한 것은 신뢰할 만한 확률강우량이 산정되어야 한다는 것이다. 하지만 지금까지의 강우빈도해석(rainfall frequency analysis)은 강도(intensity), 지속기간(duration), 깊이(depth) 사이의 연관성은 고려하지 않은 단편적인 방법론에 그치고 있다. 즉, 강우를 표현하는 인자들 간 독립(independency)이라는 가정을 거친 후, 간단한 단변량(univariate) 강우빈도분포(rainfall frequency distribution)로 확률강우량을 산정하고 있다는 것이다. 간단한 모형에 따른 이점은 있으나 최근의 강우 형태는 매우 복잡한 양상을 띠고 있어, 단변량 강우빈도분포로 이를 대표하기에는 무리가 따른다. 따라서 본 연구에서는 강우빈도해석의 인자가 독립적이며 정규분포(normal distribution)라 가정하지 않고, 세 개의 주변 분포(marginal distribution)의 형태가 같지 않다는 점, 또한 가정하지 않는 방법론 중, 그 가치를 널리 인정받고 있는 Archimedean Copula (AC)에 대한 연구를 수행하였다. AC를 이용하여 강도, 지속기간, 깊이 사이의 종속성 중, 두 가지 변량을 고려한 이변량(bivariate) 강우빈도해석을 수행하였고 그 효용성을 검토해 보았다.
Generally, Global Climate Models (GCM) cannot be used directly due to their inherent error arising from over or under-estimation of climate variables compared to the observed data. Several bias correction methods have been devised to solve this problem. Most of the traditional bias correction methods are one dimensional as they bias correct the climate variables separately. One such method is the Quantile Mapping method which builds a transfer function based on the statistical differences between the GCM and observed variables. Laux et al. introduced a copula-based method that bias corrects simulated climate data by employing not one but two different climate variables simultaneously and essentially extends the traditional one dimensional method into two dimensions. but it has some limitations. This study uses objective functions to address specifically, the limitations of Laux's methods on the Quantile Mapping method. The objective functions used were the observed rank correlation function, the observed moment function and the observed likelihood function. To illustrate the performance of this method, it is applied to ten GCMs for 20 stations in South Korea. The marginal distributions used were the Weibull, Gamma, Lognormal, Logistic and the Gumbel distributions. The tested copula family include most Archimedean copula families. Five performance metrics are used to evaluate the efficiency of this method, the Mean Square Error, Root Mean Square Error, Kolmogorov-Smirnov test, Percent Bias, Nash-Sutcliffe Efficiency and the Kullback Leibler Divergence. The results showed a significant improvement of Laux's method especially when maximizing the observed rank correlation function and when maximizing a combination of the observed rank correlation and observed moments functions for all GCMs in the validation period.
위험관리수단으로 시장위험을 정확하게 측정하는 방법 중의 하나로 VaR를 선호한다. 현실생활에서는 단일분포가 아닌 두 개 이상의 다변량분포에 대한 VaR를 추정해야 하는 경우가 많다. 이런 경우에는 VaR를 추정하기 위해 다변량분포를 고려해야 한다. 본 연구는 확률변수들의 종속적 구조를 파악하고 비정규성의 특성을 갖는 다변량 분포함수를 생성하기 위하여 Copula 함수를 사용한다. 여러 산업의 수익률분포에 적합한 Clayton, Gumbel, Frank Copula 함수가 포함된 Archimedean Copula 함수를 추정하여 다변량 수익률 분포함수를 결정하고 이에 대응하는 VaR를 유도한다. 국내의 두 산업체의 자료를 실증예제로 하여 세 종류의 Copula 함수의 모수를 추정하고 이에 대응하는 이변량 분포로부터 VaR와 각각의 주변 분포의 VaR를 구한다. 실제의 VaR를 기준으로 기존 방법으로 구한 VaR와 비교 분석하여 추정의 정확성을 토론한다.
In order to solve the life prediction problem of damaged coating steel bar in magnesium cement concrete, this study tries to establish the marginal distribution function by using the corrosion current density as a single degradation factor. Representing the degree of steel corrosion, the corrosion current density were tested in electrochemical workstation. Then based on the Copula function, the joint distribution function of the damaged coating was established. Therefore, it is indicated that the corrosion current density of the bare steel and coated steel bar can be used as the boundary element to establish the marginal distribution function. By using the Frank-Copula function of Copula Archimedean function family, the joint distribution function of the damaged coating steel bar was successfully established. Finally, the life of the damaged coating steel bar has been lost in 7320d. As a new method for the corrosion of steel bar under the multi-dimensional factors, the two-dimensional Copula function has certain practical significance by putting forward some new ideas.
Our goal is to establish and prove the almost sure central limit theorems for some order statistics $\{M_n^{(k)}\}$, $k=1,2,{\ldots}$, formed by stochastic processes ($X_1,X_2,{\ldots},X_n$), $n{\in}N$, the distributions of which are defined by certain Archimedean copulas. Some properties of generators of such the copulas are intensively used in our proofs. The first class of theorems stated and proved in the paper concerns sequences of ordinary maxima $\{M_n\}$, the second class of the presented results and proofs applies for sequences of the second largest maxima $\{M_n^{(2)}\}$ and the third (and the last) part of our investigations is devoted to the proofs of the almost sure central limit theorems for the k-th largest maxima $\{M_n^{(k)}\}$ in general. The assumptions imposed in the first two of the mentioned groups of claims significantly differ from the conditions used in the last - the most general - case.
Journal of the Korean Data and Information Science Society
/
제28권4호
/
pp.797-810
/
2017
한반도는 매년 태풍의 위험에 노출되어 있다. 태풍은 강풍과 강우가 동반되는 열대성 저기압으로 사회 경제적으로 막대한 피해를 유발한다. 현재의 자연재해 경고 시스템은 풍속과 강우를 구분하여 위험을 감지토록 설계되어 강풍과 폭우를 동반한 태풍의 위험을 경고하는데 한계점이 존재한다. 코플라모형은 확률변수들 사이의 복잡한 의존성 구조를 파악하기 위해 단변량분포의 집합을 다변량분포로 연결하는 모형으로 강우, 홍수, 가뭄 등의 분야에서 활발하게 연구되고 있다. 본 연구에서는 한반도에서 태풍에 가장 많이 노출된 도시인 부산과 제주도의 기상 관측소 (ASOS)에서 수집된 1904년 4월 9일부터 2015년 12월 31일까지 일강수량 (precipitation), 일최대풍속 (maximum wind speed) 자료를 이용하였다. 각 변수의 주변부확률을 추정하기 위해 두꺼운 꼬리 분포인 로그정규분포, 감마분포, 와이블분포를 고려하였다. 주변부 확률분포의 적합성검정은 Kolmogorov-Smirnov와 Cramervon-Mises, Anderson-Darling 검정통계량을 이용하였다. 코플라모형을 위해 순위를 기반으로 한 유사자료 (pseudo observation)를 생성하여 두 변수 간 의존성을 추정하였다. 강풍과 폭우의 의존성을 설명하기 위한 코플라모형으로 타원형, 나선형, 극단치 코플라모형이 고려되었다. 코플라모형의 적합성은 Cramer-von-Mises로 검정하였고, 교차검증을 통해 최적모형을 선택하였다. 연구결과 일강우량과 풍속의 주변부 확률분포로 대부분 로그정규분포가 적합하였다. 부산의 일평균풍속에 따른 일강우량은 t 코플라, 일최대풍속에 따른 일강우량은 Clayton 코플라가 최적모형으로 선정되었다. 제주도의 일최대풍속에 따른 일강우량은 정규코플라, 일강우량에 따른 일평균풍속은 Frank 코플라, 일강우량에 따른 일최대풍속은 Husler-Reiss 코플라가 최적모형으로 선택되었다.
최근 다변량 확률모형을 이용한 빈도해석이 수문자료 등에 적용되면서 다양하게 연구되고 있으며 다변량 확률모형 중 copula 모형은 주변분포형에 대한 제약이 없어 여러 분야에 걸쳐 활발히 연구되고 있다. 강우자료는 기존 일변량 빈도해석을 수행하기 위하여 사용하던 block maxima 방법 대신 최소무강우시간(inter event time)을 통하여 강우사상을 추출하여 표본으로 사용한다. 또한 기후변화로 인한 강우량의 변화등에 대응하기 위하여 비정상성 Generalized Extreme Value(GEV)와 Gumbel 등의 확률분포형에 대한 연구도 많은 부분 이루어져 있다. 본 연구에서는, Archimedean copula 모형을 이용하여 이변량 확률모형을 구축하면서 여기에 사용되는 주변분포형에 정상성/비정상성 분포형을 적용하였다. 모형의 매개변수는 inference function for margin 방법을 이용하였으며 주변분포형으로는 정상성/비정상성 GEV, Gumbel 모형을 적용하였다. 결과로 정상성/비정상성 경향을 나타내는 지점을 구분하고 각 지점에 대한 정상성/비정상성 주변분포형을 적용한 이변량 확률분포형을 구하였다.
A better approach for assessing meteorological drought occurrences is increasingly important in mitigating and adapting to the impacts of climate change, as well as strategies for developing early warning systems. The present study defines meteorological droughts as a period with an abnormal precipitation deficit based on monthly precipitation data of 18 gauging stations for the Han River watershed in the past (1974-2015). This study utilizes a Bayesian parameter estimation approach to analyze the effects of climate change on future drought (2025-2065) in the Han River Basin using the Coupled Model Intercomparison Project Phase 6 (CMIP6) with four bias-corrected general circulation models (GCMs) under the Shared Socioeconomic Pathway (SSP)2-4.5 scenario. Given that drought is defined by several dependent variables, the evaluation of this phenomenon should be based on multivariate analysis. Two main characteristics of drought (severity and duration) were extracted from precipitation anomalies in the past and near-future periods using the copula function. Three parameters of the Archimedean family copulas, Frank, Clayton, and Gumbel copula, were selected to fit with drought severity and duration. The results reveal that the lower parts and middle of the Han River basin have faced severe drought conditions in the near future. Also, the bivariate analysis using copula showed that, according to both indicators, the study area would experience droughts with greater severity and duration in the future as compared with the historical period.
현재 우리나라에서 끊임없이 발생하고 있는 폭풍해일로부터 연안지역의 안전을 확보하기 위해서는 태풍 시 파랑의 거동 및 특성을 정확히 예측하는 것이 중요하다. 폭풍해일 모의실험의 정확성을 향상시키고 폭풍해일의 위험성을 정량화하기 위해서는 해일파고, 파주기, 그리고 폭풍 지속시간 간의 상관성이 분석되어야한다. 이를 위해 본 연구에서는 Copulas(Archimedean) 이론을 이용하여 폭풍해일에 대한 다변량 통계분석이 이루어졌다. 동해안 연안에서 나타나는 파고, 파주기, 태풍 지속시간, 해면수위, 태풍 도착간격시간 간의 의존성을 켄달의 타우 상관계수를 이용하여 조사하였다. Copulas 다변량 통계분석의 결과, 오직 파고와 파주기, 그리고 태풍지속시간만이 명확한 상관성을 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.