• Title/Summary/Keyword: Archaebacteria

Search Result 10, Processing Time 0.036 seconds

Conserved Metabolic Pathways of 471 Species of Archaebacteria (고세균 471종의 보존적 대사경로)

  • Dong-Geun Lee;Andre Kim;Sang-Hyeon Lee
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.588-593
    • /
    • 2024
  • An extensive analysis of 3,490 metabolic pathways in 471 archaebacterial species was conducted using the MetaCyc database. The number of metabolic pathways in these species varied significantly, ranging from 13 to 184 per species. Notably, no single metabolic pathway was found to be common in all archaebacteria. However, the "UTP and CTP de novo biosynthesis" and "tRNA charging" pathways were present in the 470 species. Among the top 12 most prevalent metabolic pathways in archaebacteria, five were associated with nucleic acids and five with proteins. The remaining pathways included the "synthetic pathway of S-adenosyl-L-methionine (SAM)," a critical cofactor in various bioreactions, and "phosphopantothenate biosynthesis III (archaea)," which is required for essential post-translational modifications. These findings underscore the importance of nucleic acids and protein metabolism in archaeal biology. When the average and standard deviation of the distance values obtained from the phylogenetic tree of metabolic pathways, each class of archaebacteria was divided into main two groups and the others, showing that the distribution of metabolic pathways was diverse. This study's insights hold potential applications in both foundational science and drug development.

Analysis of Conservative Genes in Thermophilic and Hyperthermophilic Bacteria (고온성과 초고온성 세균의 보존적 유전자 분석)

  • Lee Dong-Geun;Lee Jae-Hwa;Ha Bae Jin;Ha Jong-Myung;Lee Jung-Hyun;Kim Sang-Jin;Lee Sang Hyeon
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.387-391
    • /
    • 2005
  • Totally 16,299 conservative genes, commonly found in 13 thermophilic and hyperthermophilic bacteria, were analyzed. All genes were belong to W 67 COGs (clusters of orthologous groups of proteins). COGs related to protein metabolism were 80 among 167 COGs. Conservative genes were not limited only thermophiles and hyperthermophiles, meaning thermal stability is independent of specific protein. However reverse gyrase was only found in all hyperthermophilic archaebacteria and eubacteria, meaning DNA stability is important in hyperthermophiles. Hyperthermophilic eubacteria and thermophilic archaebacteria had different position between phylogenetic tree of gene content and 165 rRNA gene. Thermophilic archaebacteria hyperthermophilic eubacteria and archaebacteria had similar values by the statistical analysis of distance values with 167 COGs in each organism.

Phylogenetic analysis of procaryote by uridylate kinase (Uridylate kinase를 이용한 원핵생물의 분류)

  • 이동근;김철민;김상진;하배진;하종명;이상현;이재화
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.856-864
    • /
    • 2003
  • The 16S rRNA gene is the most common gene in the phylogenetic analysis of procaryotes. However very high conservative of 16S rRNA has limitation in the discrimination of highly related organisms, hence other molecule was applied in this study and the result was compared with that of 16S rRNA. Three COGs (Clusters of Orthologous of protein) were only detected in 42 procaryotes ; transcription elongation facto. (COG0195), bacterial DNA primase (COG0358) and uridylate kinase (COG0528). Uridylate kinase gene was selected because of the similarity and one single copy number in each genome. Bacteria, belong to same genus, and Archaebacteria were same position with high bootstrap value in phylogenetic tree like the tree of 16S rRNA. However, alpha and epsilon Proteobcteria showed different position and Spirochaetales of Eubarteria was grouped together with Archaebacteria unlike the result of 16S rRNA. Uridylate kinase may compensate the problem of very high conservative of 16S rRNA gene and it would help to access more accurate discrimination and phylogenetic analysis of bacteria.

Classification of Archaebacteria and Bacteria using a Gene Content Tree Approach (Gene Content Tree를 이용한 Archaebacteria와 Bacteria 분류)

  • 이동근;김수호;이상현;김철민;김상진;이재화
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • A Gene content phylogenetic tree and a 16s rRNA based phylogenetic tree were compared for 33 whole-genome sequenced procaryotes, neighbor joining and bootstrap methods (n=1,000). Ratio of conserved COG (clusters of orthologous groups of proteins) to orthologs revealed that they were within the range of 4.60% (Mezorhizobium loti) or 56.57% (Mycopiasma genitalium). This meant that the ratio was diverse among analyzed procaryotes and indicated the possibility of searching for useful genes. Over 20% of orthologs were independent among the same species. The gene content tree and the 16s rDNA tree showed coincidence and discordance in Archaeabacteria, Proteobacteria and Firmicutes. This might have resulted from non-conservative genes in the gene content phylogenetic tree and horizontal gene transfer. The COG based gene content tree could be regarded as a midway phylogeny based on biochemical tests and nucleotide sequences.

Regioselective Oxidation of Lauric Acid by CYP119, an Orphan Cytochrome P450 from Sulfolobus acidocaldarius

  • Lim, Young-Ran;Eun, Chang-Yong;Park, Hyoung-Goo;Han, Song-Hee;Han, Jung-Soo;Cho, Kyoung-Sang;Chun, Young-Jin;Kim, Dong-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.574-578
    • /
    • 2010
  • Archaebacteria Sulfolobus acidocaldarius contains the highly thermophilic cytochrome P450 enzyme (CYP119). CYP119 possesses stable enzymatic activity at up to $85^{\circ}C$. However, this enzyme is still considered as an orphan P450 without known physiological function with endogenous or xenobiotic substrates. We characterized the regioselectivity of lauric acid by CYP119 using the auxiliary redox partner proteins putidaredoxin (Pd) and putidaredoxin reductase (PdR). Purified CYP119 protein showed a tight binding affinity to lauric acid ($K_d=1.1{\pm}0.1{\mu}M$) and dominantly hydroxylated (${\omega}-1$) position of lauric acid. We determined the steady-state kinetic parameters; $k_{cat}$ was 10.8 $min^{-1}$ and $K_m$, was 12 ${\mu}M$. The increased ratio to $\omega$-hydroxylated production of lauric acid catalyzed by CYP119 was observed with increase in the reaction temperature. These studies suggested that the regioselectivity of CYP119 provide the critical clue for the physiological enzyme function in this thermophilic archaebacteria. In addition, regioselectivity control of CYP119 without altering its thermostability can lead to the development of novel CYP119-based catalysts through protein engineering.

Structure and function of chemotactic transducer proteins

  • Park, Chankyu;Ha, L.zelbaure
    • The Microorganisms and Industry
    • /
    • v.12 no.2
    • /
    • pp.14-18
    • /
    • 1986
  • Barcterial chemotaxis is a transient response of an organism in a situation where environmental homogeneity has been disturbed by certain chemical compounds. The phenomenon has been described in motile bacterial species including enteric bacteria, Gram-positives(14), Spirochaetes (6) and even Archaebacteria (8). However, most comprehensive studies have been done with Escherichia coli and Salmonella typhimurium. Two analogies to higher eucaryotic sensory phenomena are provided by the study of bacterial chemotaxis. First, bacterial chemotaxis is similar to the stimulus-response of neuronal, immune and sperm cells. Second, studies of individual components involved in the bacterial sensory pathway can contribute to the understanding of the function of receptors, controling signals and molecular comparators in transmembrane signalling system. The bacterial sensory transducer, a chemoreceptor in a broad sense, is a unique entity for studying sensory function in which sensory reception, signalling and adaptation are integrated (7,18).

  • PDF

Amylase Production from Haloarcular sp. EH-1 (고호염성 Haloarcular sp. EH-1으로 부터 amylase 생산)

  • 정명주
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.570-576
    • /
    • 2002
  • The extremely halophilic archaebacterium Haloarcular sp. EH-1 was isolated from solar salts. Amylae production from Halonrcular sp. EH-1 have been studied. The results obtained were as follows. The optimal medium composition for the production of amylase from Haloarcular sp. EH-1 were soluble starch 1.5%, yeast extract 1.0%, MgSO$_4$ 7h$_2$O 2.0%, KCI 0.1%, NaCl 25% (pH 7.5). The incubation temperature, aeration rate and agitation speed were 4$0^{\circ}C$, 100 $m\ell$ medium / 500 $m\ell$ shaking flask, and 110 rpm. The cell growth and enzymatic activity was highest at 9 days of incubation. So amylase production appeared to be a growth-related phenomenon.

Purification and Characteristics of Amylase from Haloarcular sp. EH-1 (Haloarcular sp. EH-1이 생산하는 Amylase의 정제 및 특성)

  • 정명주;박형숙
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.129-135
    • /
    • 1999
  • EH-1 was highest at 9 days of incubation. This regrowth and enzymatic activity of Haloarcular sp. EH-1 was highest at 9 days of incubation. This amylase was purified by acetone fractionation, DEAG-Cellulose column chromatography, 1st Sephadex G-75 gel filtration, CM-Cellulose column chromatography and 2nd Sephadex G-75 gel filtration. The amylase was purified about 98.64 fold with a yield of 11.75%. The molecular weight of amylase was estimated to be about 43,000and 40,000 by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively, suggesting that the enzyme was a monomer. Amylase had an optimal temperature of 4$0^{\circ}C$, and an optimum pH of 7.0, and the thermal stability was observed the above 50% at 10$0^{\circ}C$ after 1 hour, and the stable range of pH was 6.0 to 8.0. The enzymatic activity was increased in the presence of 10 mM 2-mercaptoethanol, slightly by 10 mM SnCl2.2H2O.FeCl2.4H2O.CuCl2.2H2O.HgCl2.6H2O and SDS. End products from soluble starch were glucose, maltose and maltotriose, and Km value for soluble starch was 2.5mg/ml.

  • PDF

Hydrogen Production from Hyperthermophilic Archaebacteria Thermococcus onnurineus NA1 (초고온성 고세균 Thermococcus onnurineus NA1에 의한 수소생산)

  • Kim, Ok-Sun;Na, Jeong-Geol;Kim, Hae-Jin;Rhee, Young-Woo;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.671-677
    • /
    • 2011
  • A hyperthermophilic archaeon, $Thermococcus$ $onnurineus$ NA1 was studied to investigate its fermentation characteristics using various carbon sources including formate, maltose and carbon monoxide during the anaerobic batch cultivation at $80^{\circ}C$. Formate was the best carbon source for cell growth and hydrogen production among others. In the batch culture on formate, it was found that the cell concentration increased exponentially by 12 hrs of culture, after which the cell growth and formate consumption was retarded. Hydrogen production was continued more than 24 hrs although the cell growth was ceased at 18 hrs. Hydrogen production rate was directly correlated with the cell growth and formate degradation up to 18 hrs, and the average hydrogen production yield was 1.05 mole-$H_2$/mole-formate. Cell growth and hydrogen production were optimized at the initial pH 6-7, while inhibited at the initial pH lower than 5 and higher than 9.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.