• Title/Summary/Keyword: Archaeal community

Search Result 31, Processing Time 0.027 seconds

Analysis of Bacterial Diversity and Communities Associated with Tricholoma matsutake Fruiting Bodies by Barcoded Pyrosequencing in Sichuan Province, Southwest China

  • Li, Qiang;Li, Xiaolin;Chen, Cheng;Li, Shuhong;Huang, Wenli;Xiong, Chuan;Jin, Xing;Zheng, Linyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.89-98
    • /
    • 2016
  • Endophytes play an important role in the growth and development of the host. However, the study of endophytes is mostly focused on plants, and reports on bacteria associated with fungi are relatively rare. We studied the bacteria associated with fruiting bodies of Tricholoma matsutake picked from seven main T. matsutake-producing areas in Sichuan, China, by barcoded pyrosequencing. About 8,272 reads were obtained per sample, representing 40 phyla, 103 classes, and 495 genera of bacteria and archaea, and 361-797 operational taxonomic units were observed at a 97% similarity level. The bacterial community was always both more abundant and more diverse than the archaeal community. UniFrac analysis showed there were some difference of bacterial communities among the samples sites. Three bacterial phyla, Proteobacteria, Bacteroidetes, and Firmicutes, were dominant in all samples. Correlation analysis showed there was a significant correlation between some soil properties and bacterial community associated with T. matsutake. This study demonstrated that the bacteria associated with T. matsutake fruiting bodies were diversified. Among these bacteria, we may find some strains that can promote the growth of T. matsutake.

Sulphate Reducing Bacteria and Methanogenic Archaea Driving Corrosion of Steel in Deep Anoxic Ground Water

  • Rajala, P.;Raulio, M.;Carpen, L.
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.221-227
    • /
    • 2019
  • During the operation, maintenance and decommissioning of nuclear power plant radioactive contaminated waste is produced. This waste is stored in an underground repository 60-100 meters below the surface. The metallic portion of this waste comprises mostly carbon and stainless steel. A long-term field exposure showed high corrosion rates, general corrosion up to 29 ㎛ a-1 and localized corrosion even higher. High corrosion rate is possible if microbes produce corrosive products, or alter the local microenvironment to favor corrosion. The bacterial and archaeal composition of biofilm formed on the surface of carbon steel was studied using 16S rRNA gene targeting sequencing, followed by phylogenetic analyses of the microbial community. The functional potential of the microbial communities in biofilm was studied by functional gene targeting quantitative PCR. The corrosion rate was calculated from weight loss measurements and the deposits on the surfaces were analyzed with SEM/EDS and XRD. Our results demonstrate that microbial diversity on the surface of carbon steel and their functionality is vast. Our results suggest that in these nutrient poor conditions the role of methanogenic archaea in corrosive biofilm, in addition to sulphate reducing bacteria, could be greater than previously suspected.

In situ Analysis of Methanogenic Bacteria in the Anaerobic Mesophilic and Thermophilic Sludge Digestion (중온 및 고온 혐기성 소화에서 메탄생성균 군집 분석에 관한 연구)

  • Hwang, Sun-Jin;Jang, Hyun-Sup;Eom, Hyoung-Choon;Jang, Kwang-Un
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • Anaerobic digestion has many advantages over the more conventional aerobic treatment processes such as low levels of excess sludge production, low space (area) requirements, and the production of valuable biogas. The purpose of this study was to evaluate the effect of organic loading rate of anaerobic digestion on thermophilic($55^{\circ}C$) and mesophilic($35^{\circ}C$) conditions. Fluorescent in situ hybridization (FISH) method was also used to study the microbial community in the reactors. The stabilizing time in mesophilic anaerobic reactors was shorter as approximately 20 days than 40 days in the thermophilic anaerobic reactors. The amount of methane production rate in anaerobic reactors was independent of the concentrations of supplied substrates and the amount of methanogens. When the microbial diversity in the mesophilic and thermophilic reactors, which had been treated with acetate-based artificial wastewater, were compared, it was found that methanogenesis was carried out by microbial consortia consisting of bacteria and archaea such as methanogens. To investigate the activity of bacterial and archaeal populations in all anaerobic reactors, the amount of acetate was measured. Archaea were predominant in all reactors. Interestingly, Methanothrix-like methanogens appeared in mesophilic anaerobic reactors with high feed substrate concentrations, whereas it was not observed in thermophilic anaerobic reactors.

Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys

  • Choi, Heebok;Koh, Hyeon-Woo;Kim, Hongik;Chae, Jong-Chan;Park, Soo-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.883-890
    • /
    • 2016
  • Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments.

Characterization of the Microbial Diversity in a Korean Solar Saltern by 16S rRNA Gene Analysis

  • Park, Soo-Je;Kang, Cheol-Hee;Rhee, Sung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1640-1645
    • /
    • 2006
  • We studied the diversity of the halophilic archaea and bacteria in crystallizer ponds of a Korean solar saltern by analyzing 16S rRNA gene libraries. Although diverse halophilic archaeal lineages were detected, the majority (56%) were affiliated with the uncultured and cultured Halorubrum group. Halophilic archaea that have been frequently observed in solar saltern environments previously, such as Halogeometricum, Halococcus, Haloarcula, and Haloferax, were not detected in our samples. The majority of clones (53%) belonged to the Cytophaga-Flavobacterium-Bacteroides and ${\alpha}-,\;{\gamma}-,\;and\;{\delta}-Proteobacteria$ groups, with 47% of the clones being affiliated with ${\gamma}-Proteobacteria$. We also identified new ${\delta}-Proteobacteria$-related bacteria that have not been observed in hypersaline environments previously. Our data show that the diversity of the halophilic archaea and bacteria in our Korean saltern differs from that of solar salterns found in other geographic locations. We also showed by quantitative real-time PCR analysis that bacteria can form a significant component of the microbial community in solar salterns.

Effect of Ammonia Load on Microbial Communities in Mesophilic Anaerobic Digestion of Propionic Acid (암모니아 부하에 따른 프로피온산 중온 혐기성 소화 미생물 군집 변동 조사)

  • Trang, Le Thi Nhu;Lee, Joonyeob
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1093-1100
    • /
    • 2021
  • The present study investigated the effect of ammonia load on microbial communities in mesophilic anaerobic digestion of propionic acid. A laboratory-scale continuous anaerobic digester treating propionic acid as a sole organic substrate was operated under non-inhibitory condition and inhibitory conditions with ammonia (1.5 g and 3.5 g ammonia-N/L, respectively), and bacterial and archaeal communities in the steady states of each ammonia condition were analyzed using high-throughput sequencing. Thirteen bacterial families were detected as abundant bacterial groups in mesophilic anaerobic digestion of propionic acid. Increase in ammonia concentration resulted in significant shifts in microbial community structures. Syntorophobacter, Pelotomaculum, and Thermovigra were determined as the dominant groups of (potential) propionate oxidizing bacteria in the non-inhibitory condition, whereas Cryptanaerobacter and Aminobacterium were the dominant groups of (potential) propionate oxidizing bacteria in the ammonia-inhibitory condition. Methanoculleus and Methanosaeta were the dominant methanogens. Acetate-oxidation coupled with hydrogenotrophic methanogenesis might be enhanced with increases in the relative abundances of Methanoculleus and Tepidanaerobacter acetatoxydans under the ammonia-inhibitory condition. The results of the present study could be a valuable reference for microbial management of anaerobic digestion systems that are exposed to ammonia inhibition and propionic acid accumulation.

Genetic Prokaryotic Diversity in Boring Slime from the Development of a Groundwater Heat Pump System (지하수 히트펌프 시스템의 지중 환경관리를 위한 시추 슬라임의 원핵생물 유전자 다양성)

  • Kim, Heejung;Lee, Siwon;Park, Junghee;Joun, Won-Tak;Kim, Jaeyeon;Kim, Honghyun;Lee, Kang-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.550-556
    • /
    • 2016
  • Groundwater heat pump (GWHP) systems must consider phenomena such as clogging to improve system efficiency and maintenance. In this study, we evaluated the prokaryotic diversity in a boring slime sample obtained at a depth of 10 m, which represented an undisturbed sample not affected by aquifer drawdown. Bacteria belonging to the phyla Proteobacteria (20.8%), Acidobacteria (18.8%), Chloroflexi (16.9%), and Firmicutes (10.2%) were found. Additionally, 144 species were identified as belonging to the genus Koribacter. Archaeal phyla were detected including Thaumarchaeota (42.8%), Crenarchaeota (36.9%), and Euryarchaeota (17.4%) and the class level comprised the miscellaneous Crenarchaeota group (MCG), Finnish forest soil type B (FFSB), and Thermoplasmata, which collectively accounted for approximately 69.4% of the detected Archaea. Operational taxonomic units (OTUs) were analyzed to reveal 3,565 bacterial and 836 archaeal OTUs, with abundances of 7.81 and 6.68, and richnesses of 5.96E-4 and 2.86E-3, respectively. The distribution of the groundwater microbial community in the study area showed a higher proportion of non-classified or unidentified groups compared to typical communities in surface water and air. In addition, 135 (approx. 1.9%) reads were assigned to a bacterial candidate associated with clogging.

Comparative Analysis of Dissimilatory Sulfite Reductase (dsr) Gene from Sediment of Lake Sihwa, Korea and Lake Aha, China (한국 시화호와 중국 Aha호 저질토에 분포하는 이화성 아황산염 환원효소 유전자의 비교 분석)

  • Kim, In-Seon;Kim, Ok-Sun;Jeon, Sun-Ok;Witzel, Karl-Paul;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • The diversity of sulfate reducing bacteria was investigated in different depths of sediments in Lake Sihwa, Korea and Lake Aha, China by PCR amplification, denaturing gradient gel electrophoresis (DGGE) and clone libraries targeting dissimilatory sulfite redectase (dsr) gene. In the analysis of DGGE band patterns, the community compositions of dsr gene in the sediments of both lakes were significantly different whereas bands in all depths of each environment revealed similar patterns. Bands from Lake Sihwa were produced much more than those from Lake Aha, demonstrating a higher diversity of dsr gene in Lake Sihwa. Total 68 clones containing dsr gene were obtained to analyze their sequences. Sequences from the sediment of Lake Sihwa were affiliated to Deltaproteobacteria, the Gram-positive thermophilic sulfate reducers belonging to the genus Desulforomaculum and archaeal thermophilic SRB belonging to the genus Archaeoglobus, whereas sequences from the sediments of Lake Aha were related to genus Desulfotomaculum. Clones retrieved from sediment of Lake Sihwa revealed a higher numbers than those of Lake Aha, demonstrating a higher diversity of dsr gene in Lake Sihwa. Most of clones (59%) were distantly related to the known cultivated SRB with $60\sim65%$ of similarity, which were clustered only the sequences from the environments showed less than 90% similarity. These habitat specific sequences suggested that the clustered dsr sequences represent species or groups of species that were indigenous to these environments. This study showed that these lakes have a specific bacterial communities having dsr gene distinct from those in other environments such as soil and marine ecosystems around the world.

Microbial Community of the Arctic Soil from the Glacier Foreland of Midtre Lovénbreen in Svalbard by Metagenome Analysis (북극 스발바르 군도 중앙로벤 빙하 해안 지역의 토양 시료 내 메타지놈 기반 미생물 군집분석)

  • Seok, Yoon Ji;Song, Eun-Ji;Cha, In-Tae;Lee, Hyunjin;Roh, Seong Woon;Jung, Ji Young;Lee, Yoo Kyung;Nam, Young-Do;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.171-179
    • /
    • 2016
  • Recent succession of soil microorganisms and vegetation has occurred in the glacier foreland, because of glacier thawing. In this study, whole microbial communities, including bacteria, archaea, and eukaryotes, from the glacier foreland of Midtre Lovénbreen in Svalbard were analyzed by metagenome sequencing, using the Ion Torrent Personal Genome Machine (PGM) platform. Soil samples were collected from two research sites (ML4 and ML7), with different exposure times, from the ice. A total of 2,798,108 and 1,691,859 reads were utilized for microbial community analysis based on the metagenomic sequences of ML4 and ML7, respectively. The relative abundance of microbial communities at the domain level showed a high proportion of bacteria (about 86−87%), whereas archaeal and eukaryotic communities were poorly represented by less than 1%. The remaining 12% of the sequences were found to be unclassified. Predominant bacterial groups included Proteobacteria (40.3% from ML4 and 43.3% from ML7) and Actinobacteria (22.9% and 24.9%). Major groups of Archaea included Euryarchaeota (84.4% and 81.1%), followed by Crenarchaeota (10.6% and 13.1%). In the case of eukaryotes, both ML4 and ML7 samples showed Ascomycota (33.8% and 45.0%) as the major group. These findings suggest that metagenome analysis using the Ion Torrent PGM platform could be suitably applied to analyze whole microbial community structures, providing a basis for assessing the relative importance of predominant groups of bacterial, archaeal, and eukaryotic microbial communities in the Arctic glacier foreland of Midtre Lovénbreen, with high resolution.

The impact of short-term acute heat stress on the rumen microbiome of Hanwoo steers

  • Baek, Youl Chang;Choi, Hyuck;Jeong, Jinyoung;Lee, Sung Dae;Kim, Min Ji;Lee, Seul;Ji, Sang Yun;Kim, Minseok
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.208-217
    • /
    • 2020
  • Heat stress negatively affects cattle productivity by reducing feed intake. In the present study, we assessed if the rumen microbiome composition of Hanwoo steers was altered by exposure to heat stress. Rumen samples were collected from four Hanwoo steers that were individually housed in climate-controlled chambers with 60% humidity and environmental temperatures of: 1) 15℃ (0-day group), 2) 35℃ for 3 days (3-day group), and 3) 35℃ for 6 days (6-day group). The total community DNA of samples was extracted, and 997,843 bacterial and 1,508,770 archaeal sequences were analyzed using next-generation sequencing. Assessment of the relative abundances revealed 15 major phyla of which Bacteroidetes was found to be the most dominant. After 3 days of heat stress exposure there were no significant changes in the rumen microbiome composition, except for a decrease in the Planctomycetes. However, after 6 days of heat stress exposure, we found that the relative abundance of fibrolytic Ruminococcaceae had decreased while that of lactate-producing Lactobacillaceae and amylolytic Prevotella and Ruminobacter had increased. The normal rumen microbiome of Hanwoo cattle was shown to be disrupted after 6 days of heat stress, which led to the decrease in fibrolytic bacteria that are sensitive to low pH and the increase in both lactate-producing and amylolytic bacteria. We have demonstrated that the microbiome composition of the rumen is affected by acute heat stress. Our findings may contribute to the development of different feeding strategies to restore heat stress-induced disruption of the rumen microbiome.