• Title/Summary/Keyword: ArcGIS 10.0

Search Result 55, Processing Time 0.025 seconds

Improvement and Application of the ArcGIS-based Model to Estimate Direct Runoff (직접유출량 모의를 위한 ArcGIS 기반의 모형 개발 및 개선)

  • Kim, Jonggun;Lim, Kyoung Jae;Engel, Bernie;Cha, Sang Sun;Park, Chan-Gi;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.65-71
    • /
    • 2018
  • The Long-Term Hydrologic Impact Assessment (L-THIA) model is a quick and straightforward analysis tool to estimate direct runoff and nonpoint source pollution. L-THIA was originally implemented as a spreadsheet application. GIS-based versions of L-THIA have been developed in ArcView 3 and upgraded to ArcGIS 9. However, a major upgrade was required for L-THIA to operate in the current version of ArcGIS and to provide more options in runoff and NPS estimation. An updated L-THIA interfaced with ArcGIS 10.0 and 10.1 has been developed in the study as an ArcGIS Desktop Tool. The model provides a user-friendly interface, easy access to the model parameters, and an automated watershed delineation process. The model allows use of precipitation data from multiple gauge locations for the watershed when a watershed is large enough to have more than one precipitation gauge station. The model estimated annual direct runoff well for our study area compared to separated direct runoff in the calibration and validation periods of ten and nine years. The ArcL-THIA, with a user-friendly interface and enhanced functions, is expected to be a decision support model requiring less effort for GIS processes or to be a useful educational hydrology model.

A Study on the Accuracy of Calculating Slopes for Mountainous Landform in Korea Using GIS Software - Focused on the Contour Interval of Source Data and the Resolution - (GIS Software를 이용한 한국 산악 지형의 경사도 산출 정확도에 관한 연구 -원자료의 등고선 간격과 해상력을 중심으로-)

  • 신진민;이규석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The DTM(Digital Terrain Model) in GIS(Geographical Information System) shows the elevation from interpolation using data points surveyed. In panoramic flat landform, pixel size, resolution of source data may not be the problem in using DTM However, in mountainous landform like Korea, appropriate resolution accuracy of source data are important factors to represent the topography concerned. In this study, the difference in contour interval of source data, the resolution after interpolation, and different data structures were compared to figure out the accuracy of slope calculation using DTM from the topographic maps of Togyusan National Park Two types of GIS softwares, Idrisi(grid) ver. 2.0 using the altitude matrices and ArcView(TIN) ver. 3.0a using TIN were used for this purpose. After the analysis the conclusions are as follows: 1) The coarser resolution, the more smoothing effect inrepresenting the topography. 2) The coarser resolution the more difference between the grid-based Idrisi and the TIN-based ArcView. 3) Based on the comparison analysis of error for 30 points from clustering, there is not much difference among 10, 20, 30 m resolution in TIM-based Airview ranging from 4.9 to 6.2n However, the coarser resolution the more error for elevation and slope in the grid-based Idrisi. ranging from 6.3 to 10.9m. 4) Both Idrisi and ArcView could net consider breaklines of lanform like hilltops, valley bottoms.

  • PDF

Integrated Simulation System of GIS and ANN for Land Price Appraisal (GIS 기반 지가산정 및 시뮬레이션 시스템)

  • Moon, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.1-10
    • /
    • 2000
  • The purpose of this study is to develope a parcel-based automatic simulation system of land price through the integration of urban mathematical model and GIS. The appraisal process of public land price by the local government is simple but is a great time-consuming task. Moreover, it doesn't provide any statistical analysis and spatial presentation tools. So, it is difficult for planners or administrative officials to analyze the variation of land price with spatial idea. From these, a system is developed combining two sub-systems, they are ANN(Artificial Neural Network) for the calculation of land price and GIS for visual presentation. Using Matlab application, ANN model was designed having 3-layer structure and was trained with the sample data taken from Chinju city. With the trained network, the impact of 'road', 'parks', 'height control district' and 'beauty district' on land price in 9 regions(dong) are simulated. The results of the simulation were visualized with ArcView GIS. The automatic simulation system operated through the DDE(Dynamic Data Exchange) conversation between two applications. ArcView was set as client and Matlab as server. Scripting in ArcView and customizing a window of ArcView, this system can execute the whole process of simulation by just clicking a button with mouse. As a conclusion, this system was proved to be an effective and easily controllable planning support system for the land price simulation.

  • PDF

Analysis of the Characteristics of NPS Runoff and Application of L-THIA model at Upper Daecheong Reservoir (대청호 상류 유역의 비점오염원 유출특성 분석 및 L-THIA 모형 적용성 평가)

  • Shin, Min-Hwan;Lee, Jae-An;Cheon, Se-Uk;Lee, Yeoul-Jae;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Generation and transportation of runoff and pollutant loads within watershed generated eutrophication at Daecheong reservoir. To improve water quality at Daecheong reservoir, the best management practices should be developed and applied at upper watersheds for water quality improvement at downstream areas. In this study, two small watersheds of upper Daecheong reservoir were selected. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. To apply the L-THIA ArcView GIS model was evaluated for direct runoff and water quality estimation at small watershed. And the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separating from total flow. As a result, the $R^2$ (Coefficient of determination) value and Nash-Sutcliffe coefficient value for direct runoff comparison at An-nae watershed were 0.81 and 0.71, respectively. And the $R^2$ value and Nash-Sutcliffe coefficient value at Wol-oe were 0.95 and 0.93. The $R^2$ value of BOD, TOC, T-N and T-P at An-nae watershed were BOD 0.94, TOC 0.81, T-N 0.94 and T-P 0.89. And the $R^2$ value of BOD, TOC, T-N and T-P at Wol-oe watershed were BOD 0.80, TOC 0.93, T-N 0.86 and T-P 0.65. The result that estimated pollutant loadings using the L-THIA ArcView GIS model reflected well the measured pollutant loadings except for T-P in Wol-oe watershed. With L-THIA ArcView GIS model, the direct runoff and non-point pollutant (NPS) loadings in the watershed could be analyzed through simple input data such as daily rainfall, land uses, and hydrologic soil group.

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Predicting Tree Felling Direction Using Path Distance Back Link in Geographic Information Systems (GIS)

  • Rhyma Purnamasayangsukasih Parman;Mohd Hasmadi, Ismail;Norizah Kamarudin;Nur Faziera Yaakub
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.203-212
    • /
    • 2023
  • Directional felling is a felling method practised by the Forestry Department in Peninsular Malaysia as prescribed in Field Work Manual (1997) for Selective Management Systems (SMS) in forest harvesting. Determining the direction of tree felling in Peninsular Malaysia is conducted during the pre-felling inventory 1 to 2 years before the felling operation. This study aimed to predict and analyze the direction of tree felling using the vector-based path distance back link method in Geographic Information Systems (GIS) and compare it with the felling direction observed on the ground. The study area is at Balah Forest Reserve, Kelantan, Peninsular Malaysia. A Path Distance Back Link (spatial analyst) function in ArcGIS Pro 3.0 was used in predicting tree felling direction. Meanwhile, a binary classification was used to compare the felling direction estimated using GIS and the tree felling direction observed on the ground. Results revealed that 61.3% of 31 trees predicted using the vector-based projection method were similar to the felling direction observed on the ground. It is important to note that dynamic changes of natural constraints might occur in the middle of tree felling operation, such as weather problems, wind speed, and unpredicted tree falling direction.

Study on Landslide Hazard Possibility for Mt. Hwangryeong in Busan Metropolitan City Using the Infinite Slope Model (무한사면 모델을 이용한 부산 황령산 산사태 재해 평가 가능성 검토)

  • Kim, Jae Min;Choi, Jung Chan
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.413-422
    • /
    • 2016
  • With the rapidly increasing population density and development of infrastructure, the loss of life and property damage caused by landslides has increased gradually in urban area. Especially, Because Busan has high percentage of mountainous terrain among the metropolitan in Korea, it is unavoidable to develop mountainous region excessively. The objective of this evaluation is to study on landslide hazard possibility for Mt. Hwangryeong in Busan Metropolitan City using the infinite slope model considering the groundwater level. All data related to creating the thematic maps was carried out using ArcGIS 10.0. The results show that FS (Factor of Safety) for landslide is inversely proportional to groundwater level change as expected. Most area indicates stable state in dry condition, and unstable area increase due to high pore water pressure when the groundwater level rise. However, several places in high lineament density area where landslide has been previously occurred, are more stable than other places according to the analysis. This inconsistency between real situation and analysis results indicates that additional analytical method would be necessary to solve the problem. Therefore, we suggest that development of new infiltration theory for unsaturated zone would be helpful to evaluate groundwater level distribution as time goes by.

Assessment of liquefaction potential of the Erzincan, Eastern Turkey

  • Duman, Esra Subasi;Ikizler, Sabriye Banu;Angin, Zekai;Demir, Gokhan
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.589-612
    • /
    • 2014
  • This study includes determination of liquefaction potential in Erzincan city center. Erzincan Province is situated within first-degree earthquake zone on earthquake map of Turkey. In this context, the earthquake scenarios were produced using the empirical expressions. Liquefaction potential for different earthquake magnitudes (6.0, 6.5, 7.0) were determined. Liquefaction potential was investigated using Standard Penetration Test (SPT). Liquefaction potential analyses are determined in two steps: geotechnical investigations and calculations. In the first steps, boreholes were drilled to obtain disturbed and undisturbed soil samples and SPT values were obtained. Laboratory tests were made to identify geotechnical properties of soil samples. In the second step, liquefaction potential analyses were examined using two methods, namely Seed and Idriss (1971), Iwasaki et al. (1981). The liquefaction potential broadly classified into three categories, namely non-liquefiable, marginally liquefiable and liquefiable regions. Additionally, the liquefaction potential index classified into four categories, namely non-liquefiable, low, high and very high liquefiable regions. In order to liquefaction analysis complete within a short time, MATLAB program were prepared. Following the analyses, liquefaction potential index is investigated by Iwasaki et al. (1982) methods. At the final stage of this study, liquefaction potential maps and liquefaction potential index maps of the all study area by using IDW (inverse distance weighted) interpolation method in Geostatistical Analyst Module of ArcGIS 10.0 Software were prepared for different earthquake magnitudes and different depths. The results of soil liquefaction potential were evaluated in ArcGIS to map the distributions of drillings with liquefaction potential. The maps showed that there is a spatial variability in the results obtained which made it difficult to clearly separate between regional areas of high or low potential to liquefy. However, this study indicates that the presence of ground water and sandy-silty soils increases the liquefaction potential with the seismic features of the region.

Development of a GIS-based Computer Program to Design Countermeasures against Debris Flows (GIS기반 토석류 산사태 대응공법 설계 프로그램 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • We developed a computer program (CDFlow v. 1.0) to design countermeasures against debris flows in natural terrain. The program can predict the probability of landslides occurring in natural terrain and can estimate the zone of damage caused by a debris flow. It can also be used to design the location and size of countermeasures against the debris flow. The program is run using the ArcGIS Engine, which is one of the most well-known Geographic Information System (GIS) tools for developers. The quasi-dynamic wetness index and the infinite slope stability equation were applied to predict landslide probability as a type of slope safety factor. The calculated safety factor was compared with the required safety factor, and areas of high probable potential for landslides were then selected and represented on the digital map. The volume of debris flow was estimated using these areas of high probable potential for landslides and soil depth. The accumulated volume of debris flow can be calculated along the flow channel. To assess the accuracy of the program, it was applied to a real landslide site at Deoksan-ri, Inje-gun, Kangwon-Province, where four debris barriers have been installed in the watershed of the site. The results of soil tests and a field survey indicate that the program has great potential for estimating probable landslide areas and the trajectory of debris flows. Calculation of the capacity volume of existing debris barriers revealed that they had insufficient capacity to store the calculated amount of debris flow. Therefore, this program enables a rational estimation of the optimal location and size of debris barriers.

Evaluation on Risk Assessment for Landslide Hazard of Soil Slope Using the Checklists as a Preliminary Investigation Method (점검표를 이용한 토질사면 산사태 예비조사 방법 평가)

  • Kim, Jae Min;Choi, Jung Chan
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The objective of this study is to evaluate landslide hazard susceptibility and produce the landslide hazard maps for soil slope using checklists as a preliminary investigation method. Tables, proposed by NDMI (National Disaster Management Institute), are applied for slope stability assessment, and are comprised of checklists on soil slopes. Database including engineering properties of soil is constructed through the field survey and results from previous studies for The Mt. Hwangryoeng area at center of Busan. All data related to creating the thematic maps was carried out using ArcGIS 10.0. Results from using this method indicated that soil slope are evaluated from very stable to stable. Moderate stability has been partially presented along the edge of mountain. Results from landslide hazard maps can be used to prevent damage from landslides and facilitate appropriate land use planning.