• Title/Summary/Keyword: Arc-View

Search Result 309, Processing Time 0.028 seconds

A Subsurface Environmental Management System using Spatial Information System and Groundwater Model (공간정보시스템과 지하수모형을 결합한 지하환경관리시스템의 구축)

  • Kim, Joon Hyun;Han, Young Han
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.287-291
    • /
    • 1999
  • This study was performed to develop an information processing system for the sound conservation of soil and groundwater resources. The system contains the geographic spatial information system(GSIS), and the numerical model of groundwater flow and contamination. Numerical models (MODFLOW, MOC3D, MT3D, PMPATH, PEST, UCODE) and GSIS(ArcView) were integrated for the construction of an integrated management system of subsurface environment. The developed system was applied to the management of three mineral water companies located in clean mountain area. The impact of pumping over the overall catchment basin was modeled using the developed system for the decision of future management criteria.

  • PDF

Water Quality modeling in the Hongbo watershed with WASP5 and GIS (GIS와 WASP5를 이용한 홍보유역의 수질모델링(지역환경 \circled1))

  • 김선주;김해도;허배영
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.519-524
    • /
    • 2000
  • The goal of this research is the establishment of a connection of an existing water quality model to GIS. The water quality model investigated was the Water Quality Analysis Simulation Program (WASP5), while the actual linkage was performed using object-oriented programming. The runoff and the non-point source loadings into the Channel were determined using a grid-based model developed in GIS. Afterwards, scripts were written in the ArcView programming language, Avenue, in order for ArcView to perform the following tasks : 1) write the input file informations, 2) format the input information into the proper WASP5 file, 3) execute the WASP5 subprogram for modeling.

  • PDF

3-D Spatial Data Modeling Software (3차원 공간자료 모델링 소프트웨어 개발)

  • Lee, Doo-Sung;Kim, Hyoun-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • We developed a modeling and visualization software that can analyze 3-dimensional spatial information in the ArcView environment. The software constructs and visualizes an object in 3 dimensional space from the input data given a number of horizontal cross-sections. The software can generate and visualize the cross-sections of the object in any azimuth and inclination. Utilizing the program users can modify the 3-D shape of the object by interactively editing the cross-sections.

Development of Environmental Information System of Small Watershed Using Geographic Information System (지리정보시스템을 이용한 소유역의 환경정보체계 구축)

  • Jeong Hyo-June;Hwang Dae-Ho;Bang Seung-Seok;Park Sue-Yeon;Lee Hong-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • This study was carried out to provide environmental information using geographic information system for the environmental manager engaged in governmental office. Point and nonpoint sources were classified by each small watershed and an administrative district. ArcView and ERDAS software were used to develop environmental information system. Small watershed was extracted into the DTEM using HEC-geoHMS which is ArcView extension. Study area was divided into 7 small watershed. Point sources were constituted as cattle, milk cattle, swine, and poultry. Land use was divided into forests, rice paddies, residential sites et al. User interface was designed to search information easily for the nonprofessional GIS users.

Development and application of a GIS based groundwater modeling system

  • Lee, Saro;Park, Eungyu;Cho, Min-Joe
    • Spatial Information Research
    • /
    • v.10 no.4
    • /
    • pp.551-565
    • /
    • 2002
  • To carry out systematic groundwater assessment, exploration and management and to use these for protection of optimal groundwater yield, a data analysis and management system is required. Thus, the object of this research was to develop and apply software that integrates GIS and groundwater modeling: GISGAM (GIS for groundwater analysis and management system). The GIS program ArcView and the groundwater-modeling program MODFLOW were used for the GISGAM. The program components consist of a pre-processor, a processor, and a post-processor for groundwater modeling. In addition, GIS functions such as input, manipulation, analysis and output of data were embedded into the program. In applying the program to pilot area, topography, geology, soil, land use and well databases, and a groundwater flow model were constructed for the study area. This case study revealed the advantage and convenience of groundwater modeling using GIS capabilities. By integrating GIS and the groundwater model, the impact of changing values of hydrogeological constants on model results could be more easily evaluated.

  • PDF

Water Quality Management of the Youngsan River based on the 7Q10 and Q275 considering Wastewater Treatment Cost (하수처리비용을 감안하고 7Q10과 저수량에 기초한 영산강 수질관리방안 연구)

  • Cho, Jae-Heon;Yu, Tai-Jong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.700-709
    • /
    • 2002
  • Present condition of the Youngsan River pollution is serious. Concentrations of organic materials and nutrients are high and algal bloom takes place frequently. The pollution is mainly caused by domestic wastewater input from urban areas like Kwangju and Naju City. In this study, 6 times of water quality surveys were done for mainstream and tributaries. Delivery ratios of each tributaries are calculated with the water quality and flow data. With Arc/View GIS, sub-basin are divided and pollution loads are estimated. These data are used for water quality modeling. River quality improvement effects are analysed with 5 scenarios including process upgrade of present WWTPs and construction of new WWTPs. These scenarios are applied for the Youngsan River based on the 7Q10 and Q275. And total wastewater treatment cost in the basin is analysed for each scenario.

Development of Monitoring Program for Detecting Current and Voltage Signals for Series Arc (직렬아크에 대한 전류 및 전압 신호분석이 가능한 Monitoring Program 개발)

  • Kim, Doo-Hyun;Park, Jong-Young;Kim, Sung-Chul;Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.29-34
    • /
    • 2010
  • This paper is aimed to develop monitoring software for detecting the characteristics of current and voltage signals for series arc on electric wire. In order to attain this purpose, the characteristics of series arc were analyzed by the current and voltage signals on electric wire which were installed, and also analyzed by the changes of RMS, instantaneous of waveform value in time domain and THD in frequency domain. Monitoring program which analyze the signal was developed by Labview which can analyze in time domain and frequency domain, and save data. Experimental setup for detecting verification of monitoring program was composed loads of a lamp, an electric heater and an electric fan loads which were usually using. Measurement points for detecting verification of monitoring program were selected at both the panel board and the arc generator at the same time. As results of the experiments by monitoring program, the arc current waveform showed the same characteristic in all measurement points of all load. But the arc voltage waveform was different in each measurement point. When arc occurred, the THD of current value increased above 20%. The results of this study will be effectively used in developing the preventive system of electric fire by series arc.

Application of Geographic Information System for Synthetic Analysis of Multidisciplinary Data in Seawater Intrusion Assessment (해수침투 조사자료의 통합적 해석을 위한 GIS의 적용)

  • Choi Sun-Young;Hwang Seho;Park Kwon Gyu;Shin Je-Hyun;Yoon Wang-Jung
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2004
  • In order to effectively, and accurately assess seawater intrusion in coastal area, multidisciplinary data including geophysical, well logging, and hydrogeochemical data should be managed in systematical way. Such systematical management of data is critical key to improve the re-usability of the data as well as the accuracy of the assessment by means of providing a method of synthetic analysis. Therefore, for systematical management of multidisciplinary data in seawater intrusion problem, we have developed a database management system and 3-D visualization interface based on geographic information system in this, study. All geophysical survey, well logging, hydrochemical, as well as drilling, data are classified as attribute data using Microsoft Access, and joined with spatial information based on ArcView. The database management system and 3-D visualization interface to handle these data, also, developed using the script language of ArcView. We think the development of database and 3-D visualization system will improve the efficiency of data management, user-friendliness of data access, and accuracy of data analysis.

  • PDF

The Characteristics of Regional Structure in Metropolitan and Surrounding Areas using ArcView (ArcView를 이용한 대도시와 주변도시의 특성분석에 관한 연구)

  • Kim, Heung-Kwan;Kang, Gi-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • The purpose of this study is to examine the characteristics of regional structure in metropolitan and surrounding areas in Busan metropolitan and Gyeongsang-Namdo. An analysis of urban growth factors with change process, that data suggests a urban management direction of Busan metropolitan and Gyeongsang-Namdo for the future. The findings of this study are summarized as follows: 1) factor analysis result 5 factors appeared, with this result use to cluster analysis of all 4 cluster. 2) The regional structure of Busan metropolitan and Gyeongsang-Namdo are accelerated know that is most industry connection areas concentration of southeast. 3) It is considered to regional development must be activated.

  • PDF

Analysis of the Characteristics of NPS Runoff and Application of L-THIA model at Upper Daecheong Reservoir (대청호 상류 유역의 비점오염원 유출특성 분석 및 L-THIA 모형 적용성 평가)

  • Shin, Min-Hwan;Lee, Jae-An;Cheon, Se-Uk;Lee, Yeoul-Jae;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Generation and transportation of runoff and pollutant loads within watershed generated eutrophication at Daecheong reservoir. To improve water quality at Daecheong reservoir, the best management practices should be developed and applied at upper watersheds for water quality improvement at downstream areas. In this study, two small watersheds of upper Daecheong reservoir were selected. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. To apply the L-THIA ArcView GIS model was evaluated for direct runoff and water quality estimation at small watershed. And the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separating from total flow. As a result, the $R^2$ (Coefficient of determination) value and Nash-Sutcliffe coefficient value for direct runoff comparison at An-nae watershed were 0.81 and 0.71, respectively. And the $R^2$ value and Nash-Sutcliffe coefficient value at Wol-oe were 0.95 and 0.93. The $R^2$ value of BOD, TOC, T-N and T-P at An-nae watershed were BOD 0.94, TOC 0.81, T-N 0.94 and T-P 0.89. And the $R^2$ value of BOD, TOC, T-N and T-P at Wol-oe watershed were BOD 0.80, TOC 0.93, T-N 0.86 and T-P 0.65. The result that estimated pollutant loadings using the L-THIA ArcView GIS model reflected well the measured pollutant loadings except for T-P in Wol-oe watershed. With L-THIA ArcView GIS model, the direct runoff and non-point pollutant (NPS) loadings in the watershed could be analyzed through simple input data such as daily rainfall, land uses, and hydrologic soil group.